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Biological systems are characterized by compartmentalization from the sub-cellular to the tissue
level, and thus reactions in small volumes are ubiquitous in living systems. Under such condi-
tions, statistical number fluctuations, which are commonly negligible in bulk reactions, can become
dominant and lead to stochastic behavior. We present here a stochastic model of protein filament
formation in small volumes. We show that two principal regimes emerge for the system behavior, a
small fluctuation regime close to bulk behavior and a large fluctuation regime characterized by single
rare events. Our analysis shows that in both regimes the reaction lag-time scales inversely with the
system volume, unlike in bulk. Finally we use our stochastic model to connect data from small vol-
ume microdroplet experiments of amyloid formation to bulk aggregation rates, and show that digital
analysis of an ensemble of protein aggregation reactions taking place under micro-confinement pro-
vides an accurate measure of the rate of primary nucleation of protein aggregates, a process which
has been challenging to quantify from conventional bulk experiments.

PACS numbers: 87.14.em, 02.50.-r, 87.15.rp, 87.18.Tt

The formation of protein filaments is a process of cen-
tral importance for both normal [1, 2] and aberrant bi-
ology [3, 4], as well as for the development of novel
materials for nanotechnology [6–9]. The fundamental
kinetic equations describing such processes in bulk are
well-established in the literature and have been studied
extensively over the past 50 years [1, 2, 10–17]. These
descriptions rely on the mean-field assumption [10] and
therefore neglect statistical mechanical fluctuations. Yet,
protein aggregation processes in typical cellular environ-
ments (fL-pL) involve significantly smaller numbers of
molecules than conventional bulk experiments and thus
stochastic variability is expected to play an important
role [15, 16, 18–20]. Moreover, recent experimental ad-
vances in microdroplet techniques [19, 21] allow volumes
in the picolitre range, comparable to intracellular vol-
umes, to be probed for synthetic systems, creating the
need for a general theoretical framework capable of de-
scribing protein filament assembly in small volumes.

Current theoretical descriptions of protein filament for-
mation in small volumes focus on systems characterized
by aggregate propagation from a single primary nucle-
ation event [31]. A key question is, however, the nature
of the full fluctuation behavior bridging the gap between
the limit of classical nucleation theory and bulk behavior.
In this Letter, we study stochastic effects in filamentous
growth processes with secondary pathways [12–16, 22–29]
and derive closed-form expressions for the distribution of
lag times. Our theoretical framework describes currently
available microdroplet experimental data which are char-
acterized by aggregate proliferation from multiple nucle-
ation sites. Moreover, our results suggest a powerful
method for characterizing the primary nucleation step,

which is typically difficult to access from current bulk
methods. We demonstrate the power of this approach by
obtaining a value for the rate of primary nucleation for
bovine insulin aggregation which is significantly better
constrained than results obtained from analysis of bulk
data.

Stochastic moment equations - We consider a system
of volume V containing a mixture of fibrillar aggregates
and monomeric proteins in solution. Since we are in-
terested in the early-stages of the assembly process, we
assume a constant chemical potential for the available
soluble precursor proteins [11–13]. We describe the state
of the system by a vector (n,m), where n is the number
of fibrils and m is the number of monomers incorporated
into aggregates, parameters which relate directly to ex-
perimental observables [30]. The probability distribution
function (PDF) P (n,m, t) of states (n,m) evolves accord-
ing to a master equation [31]:

∂P (n,m, t)

∂t
= α1P (n− 1,m− nc, t)− α1P (n,m, t)

+ µnP (n,m− 1, t)− µnP (n,m, t)

+ α2(m− n2)P (n− 1,m− n2, t)
− α2mP (n,m, t),

(1)

where α1, µ and α2 are the transition rates (units s−1) for
primary nucleation, filament elongation and secondary
mechanisms, respectively (Fig. 1(a)). This description
explicitly considers time variations of the PDF in terms
of probability fluxes: the positive expressions represent
gain terms that account for system transitions into state
(n,m), whereas the negative terms describe losses from
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transitions from (n,m) into other states. The terms
on the first line of Eq. (1) describe the initial pri-
mary nucleation step as the spontaneous formation of
growth-competent aggregates from the interaction of nc
monomers. The increase of aggregate mass through elon-
gation is described by the terms on the second line of
Eq. (1). Secondary processes are captured by the third
and fourth lines of Eq. (1) and cover several options, in-
cluding breakage (n2 = 0) [13, 22, 24, 25], lateral branch-
ing (n2 = 1) [12, 26, 27] and surface-catalyzed secondary
nucleation (n2 ≥ 2) [16, 28, 29]. Note that in general
monomer dissociation from filament ends and re-joining
of fibrils are necessary components to ensure microscopic
reversibility [32]. The assumption of vanishing rates of
monomer dissociation and polymer re-joining employed
here, however, is justified as these processes do not sig-
nificantly affect the early stages of the reaction [33].

The transition rates entering Eq. (1) can be related to
the total concentration of proteins, mtot, and the bulk
rate parameters kn, k+, k2 for primary nucleation, elon-
gation and secondary pathways, respectively, by requir-
ing the rate equations for the averages 〈n〉 and 〈m〉 being
in agreement with existing early-time deterministic mod-
els [10–13] (see the Supplemental Material [35]). This
condition yields α1 = knm

nc
totNAV , µ = 2k+mtot and

α2 = k2m
n2
tot, where NA is the Avogadro number [31].

Importantly, the transition rate for primary nucleation,
α1, explicitly depends on the system size, V , while the
parameters µ and α2 describing autocatalytic growth are
determined only by the associated bulk quantities. We
expect therefore that reducing system size leads to a tran-
sition from a situation when the kinetics are controlled
by autocatalytic growth to a situation when the fibrilli-
sation reaction is limited by primary nucleation. Thus,
primary nucleation events becoming infrequent is at the
origin of the stochastic behavior of filamentous growth
processes in small volumes.

Analytical solution for the PDF - The master equation
(1) yields differential equations for the principal moments
of the PDF through summation over system composi-
tions. Solving for moments for times greater than κ−1,

with κ =
√
µα2 =

√
2k+k2m

n2+1
tot being the character-

istic time scale for aggregate proliferation [11–13], but
still sufficiently short for the constant monomer approxi-
mation to be valid, shows that the Pearson’s correlation
coefficient for n and m, ρn,m = [〈nm〉 − 〈n〉〈m〉][(〈n2〉 −
〈n〉2)(〈m2〉 − 〈m〉2)]−1/2, equals 1 in this limit (see the
Supplemental Material [35]). This result implies the ex-
istence of a linear correlation in this regime between the
random variables n and m, whereby the constant of pro-
portionality is m = κ

α2
n, t � κ−1. We can directly test

this prediction from numerical realizations of Eq. (1) gen-
erated using Gillespie algorithm [38] which reveal that n
and m are indeed linearly correlated even before aggre-
gation is detected (see the Supplemental Material [35]).

FIG. 1: (a) Different transitions in stochastic protein aggre-
gation. (b) Time evolution of average mass concentration and
68% confidence bands. Inset: PDF for m at t = 106 minutes
predicted by Eq. (3) (solid line) is compared to numerics. The
dashed line is the solution of [34]. (c) The scaling behaviour of
the average lag time with system volume predicted by Eq. (5).
Inset: PDF of lag times for V = 1 nL predicted by Eq. (4)
(solid line) is compared to numerics. The dashed line is from
[34]. Calculation parameters: kn = 4×10−13 M−1s−1, nc = 2,
n2 = 0, k2 = 2.5×10−8 s−1, k+ = 2.5×104 M−1s−1, mtot = 5
mM, V = 1 nL.

The linear correlation between n and m allows recasting
the master equation (1) into an equivalent one with a
single variable

∂P (n, t)

∂t
= α1P (n− 1, t)− α1P (n, t)

+ κ(n− 1)P (n− 1, t)− κnP (n, t).
(2)

Interestingly, Eq. (2) is analogous to the master equation
of bacterial growth [34], whereby bacteria are constantly
introduced into the system at rate α1 and multiply with
rate κ. This analogy, first hypothesized by Szabo [34],
is a statement of the fact that for times bigger than κ−1

the average length of aggregates is constant. To define
appropriate initial conditions for Eq. (2), we match the
first moments of the PDFs of Eqs. (1) and (2) for times
t � κ−1, yielding 〈n〉(t = log 2/κ) = 0. This condition
translates necessarily into P (n, t = log 2/κ) = δn,0 there-
fore ensuring that also all higher moments of the PDFs
of Eqs. (1) and (2) match for t � κ−1 at leading order.
The exact solution of Eq. (2) subject to the above initial
conditions is (see the Supplemental Material [35])

P (n, t) =
2α1/κΓ

(
n+ α1

κ

)
Γ(n+ 1)Γ

(
α1

κ

) e−(α1+κn)t(eκt − 2)n, (3)

where Γ(x) =
∫∞
0
tx−1e−tdt is the Gamma function. The

PDF in terms of the variablem is obtained by implement-
ing the correlation between n and m in Eq. (3). Figure
1(b) shows that Eq. (3) is in agreement with numerical
realizations of Eq. (1).
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FIG. 2: (a) Analysis of small-volume experiments of bovine
insulin fibrillization kinetics from Ref. [19]. Dashed line: best
fit to 〈τ〉 ∝ cn/V ; solid line: prediction from Eq. (5); dotted
lines: kn is decreased/increased by an order of magnitude.
〈τ〉 shows marked volume dependence despite the presence of
multiple nucleation sites as demonstrated by the plot of the
number of nuclei formed on average during the mean lag time
against 1/V . (b) Kinetic analysis of insulin aggregation in
bulk. Solid line: best fit curve to initial exponential growth;
dotted lines: kn is decreased/increased by an order of magni-
tude relative to best fit. (c) Average number of nuclei formed
in lag time. (d) Predicted probability to observe more than
one nucleation event is compared with measurements from
analysis of 80 microscopic droplet images. (e) Fluorescence
microscopy images of representative microdroplets of volumes
A, B and C in (c) and (d).

Lag times - A common qualitative feature of filamen-
tous growth processes is the observation of a lag phase
before aggregation can be detected. A commonly used
measure of this polymerization delay is the lag time, τ ,
defined as the time at which the aggregate mass concen-
tration m(t)/(NAV ) reaches an arbitrarily chosen con-
centration threshold Mth. Although it is often the case
that a halfway point for the reaction is taken, this may
fall outside the realm over which our approximations are
valid. Therefore a 10% extent or the experimental limit
for aggregate detection [30] are simple choices for Mth

more in keeping with our solution. Because τ is a ran-
dom variable, the quantity of interest is the PDF of lag
times, i.e. the probability T (t) that τ equals t. According
to the theory of first passage times [34], T (t) is computed

as T (t) = −dQ(t)
dt , where Q(t) is the probability that at

time t the process m(t)/(NAV ) has not yet reached Mth.

Using Eq. (3) we find

T (t) =
κ2α1/κΓ

(
nth + α1

κ

)
Γ (nth) Γ

(
α1

κ

) e−(α1+(nth−1)κ)t(eκt−2)nth−1,

(4)
where nth = α2NAVMth/κ. The average lag time is
obtained from Eq. (4) as

〈τ〉 =
log(2)

κ
+

nth−1∑
j=0

1

α1 + jκ
(5)

and the extent of fluctuations is

σ2 = 〈τ2〉 − 〈τ〉2 =

nth−1∑
j=0

1

(α1 + jκ)2
. (6)

Limiting behavior of lag time in key regimes -
Inspection of Eqs. (5) and (6) reveal that the level of
stochasticity in the system is controlled by the dimen-
sionless parameter γ = κ/α1. Based on this parameter,
we can distinguish three natural regimes of stochastic
behavior: bulk (γ = 0), onset of stochasticity (γ → 0)
and single-event controlled (γ → ∞). We now discuss
how Eqs. (5) and (6) can be simplified in these regimes.
In bulk (γ = 0), the sum in Eq. (5) is replaced by an
integral and Eq. (5) is determined solely by the propaga-
tion time associated with the secondary nucleation chain
reaction, τbulk (see the Supplemental Material [35]). Se-
ries approximation of Eq. (5) around γ = 0 allows us
to explore the onset of stochasticity and reveals that 〈τ〉
approaches the bulk value τbulk as 〈τ〉 = τbulk + cn/(2V ),
where cn = 1/(knm

nc
totNA) is the average time of form-

ing nuclei in volume V (see the Supplemental Material
[35]). This system size expansion shows therefore that, in
this regime, 〈τ〉 approximatively decomposes into a sum
of the deterministic lag time and a term proportional to
1/V . The extent of fluctuations in this regime is approx-
imatively given by σ2 = cn/(κV ) (see the Supplemental
Material [35]). In the opposite limit of very small volumes
or slow nucleation (γ → ∞), the dominant contribution
to Eq. (5) is 〈τ〉 = cn/V [31]. In this regime, V is small
enough that eventually only a single nucleation event oc-
curs ahead of the threshold being reached, at which point
〈τ〉 is dominated by the waiting time for formation of a
single nucleus, which scales inversely proportional to sys-
tem volume as expected from classical nucleation theory
[39]. Furthermore, the extent of fluctuations is now con-
trolled by σ2 = (cn/V )2 (see the Supplemental Material
[35]). Equations (5) and (6) interpolate smoothly be-
tween these limiting regimes. In particular, across the
entire range of system sizes 〈τ〉 approximatively writes
as the sum of the deterministic lag time and a nucle-
ation term proportional to 1/V , whereby the constant of
proportionality satisfies cn/2 ≤ d〈τ〉/d(1/V ) ≤ cn. The
transition between these two limiting regimes occurs ap-
proximatively at the critical volume Vc = κcn at which
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γ = 1. This critical volume corresponds to the radius of
convergence of the system size expansion of 〈τ〉 around
γ = 0 and hence marks the upper volume limit for the
small fluctuation result to be accurate.

Stochastic analysis provides strong constraints for
probing primary nucleation events - Heretofore, rate con-
stants for protein aggregation have been determined
by carrying out kinetic experiments in bulk, in which
the mass concentration of fibrils over time is measured
[30, 40], and by fitting such data to rate laws derived from
deterministic master equations [40]. Typically, however,
the rate constants characterizing the elementary pro-
cesses of primary and secondary nucleation and growth
occur as combinations, and thus it remains challenging
to obtain accurate values for the rates of these processes
from experimental data. In particular the process of pri-
mary nucleation has proven challenging to quantify, in
part as the major experimental observables such as the
lag-phase display only a weak logarithmic dependence on
this parameter. Remarkably, however, our results sug-
gest that a measurement of the volume dependence of
the lag time allows the rate of primary nucleation to be
determined directly from the slope of a plot of 〈τ〉 ver-
sus 1/V . This approach has several advantages over at-
tempting to characterize primary nucleation from bulk
polymerization fraction experiments: (i) While fitting of
bulk experiments fixes only the combined rate parame-
ter k+kn, the analysis of stochastic data allows the rate
of primary nucleation to be determined directly, without
the necessity of estimating the elongation rate constant
or the length of the aggregates, from other experimen-
tal techniques, factors which are intrinsically sources of
significant error. (ii) Microdroplet experiments can be
tightly controlled, and lag time experiments are digital
in nature with the exact value of the threshold not enter-
ing the gradient and thus not contributing to error. (iii)
In the presence of secondary mechanisms, the fitting of
bulk data over the full time course is predominantly con-
strained by the autocatalytic processes rather than the
primary nucleation step, contributing to uncertainties of
several orders of magnitude for the determined nucleation
rate [41]. Even if fitting is limited to the early-times, the
exponential form of the fitting equation allows for sub-
stantial leeway in the values of the fitting parameters, as
numerous combinations of such parameters give rise to
fairly similar-looking curves. For example, changing the
best fit value for kn by an order of magnitude would not
significantly affect the performance of the bulk analysis
fit, but would give rise to a dramatically poorer fit of 〈τ〉
vs 1/V in a linear relationship (Figs. 2(a,b)).

Connecting small-volume experiments of bovine insulin
fibrillization kinetics to bulk experiments - We have ap-
plied this technique to analyze data from microdroplet
experiments on bovine insulin [19] and obtained a value
for the rate of primary nucleation of c−1n = (6 ± 1) · 106

s−1L−1 (Fig. 2(a)). We then carried out bulk experi-

ments of insulin aggregation (see the Supplemental Ma-
terial [35]) and fitted the data to a standard deterministic
models, in conjunction with our calculated value for the
rate of primary nucleation in microdroplets (Fig. 2(b)).
The resultant calculated rate of elongation µ = 2 · 105

s−1 agrees with those reported in the literature, to within
the levels of error expected from the method of calcula-
tion [43], showing that the stochastic analysis presented
in this paper allows small volume behavior to be related
to conventional bulk experiments. Moreover, the value of
the nucleation rate constant is constrained to within bet-
ter than an order of magnitude, a result that it very chal-
lenging to achieve with analysis of bulk data (Fig. 2(b)).

Linking average number of nucleation events with ex-
perimental observations -Finally, we test our model by
predicting the number of individual nuclei formed in the
mean lag time using the extracted nucleation rate con-
stant (Fig. 2(c)). Individual nuclei can be counted in mi-
crodroplet experiments; however, the fluorescence signal
due to fibril growth from previous nuclei is expected to
obscure signals from subsequent nucleation events, and
thus only some events are observed. In order to compare
this prediction with experiments, we therefore devised
a probabilistic model capable of quantifying this effect
(see the Supplemental Material [35] for details). Apply-
ing this methodology to the analysis of 80 droplet images
(Fig. 2(d,e)), we see overall good agreement between the
predicted and measured probabilities of observing more
than one nucleation event, given the limitations of our
measurement techniques. Thus, the system behavior re-
sults from multiple nucleation sites even though naive
visual inspection would suggest single nucleation events.

Conclusions - We have reported of a theoretical study
on stochastic effects in nucleated polymerization phe-
nomena in small volumes. We have derived fully an-
alytical results describing the distribution of lag times
that allows linking the bulk parameters characterizing
large-volume experiments with the statistical properties
of polymerization curves in small volumes across the en-
tire range of fluctuation behavior. From the analysis of
experimental data, we have shown that small volume mi-
crodroplet experiments of amyloid aggregation are typi-
cally characterized by multiple nucleation events. More-
over, our results provide a practical route towards an ac-
curate determination of primary nucleation rates which
represent a key event in the transition of soluble proteins
into their aggregated forms.
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