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We obtain the general conditions for the emergence of odd-frequency superconducting pairing in
a two-dimensional (2D) electronic system proximity-coupled to a superconductor, making minimal
assumptions about both the 2D system and the superconductor. Using our general results we show
that a simple heterostructure formed by a monolayer of a group VI transition metal dichalcogenide,
such as molybdenum disulfide, and an s-wave superconductor with Rashba spin-orbit coupling will
exhibit odd-frequency superconducting pairing. Our results allow the identification of a new class
of systems among van der Waals heterostructures in which odd-frequency superconductivity should
be present.

Low-dimensional heterostructures hold the promise for
new technologies1–5 as well as granting us access to many
unconventional quantum states including: novel forms of
superfluidity6, manipulation of spin textures7,8, and un-
conventional superconductivity4,9–15. In addition, theo-
retical analyses have shown that Majorana bound states
can appear in heterostructures incorporating supercon-
ducting materials16–28. Given the variety of possible ex-
otic states in low dimensional heterostructures and that
the fabrication of layered heterostuctures has rapidly ad-
vanced in recent years5 it is important to continue devel-
oping our understanding of their electronic properties.
One important facet of this understanding is the clas-
sification of the possible symmetries of the proximity-
induced superconductivity in these structures.

The symmetries of a superconductor can be char-
acterized by investigating the properties of the
anomalous Green’s function Fαβ(r1, t1; r2, t2) =
〈Tcα(r1, t1)cβ(r2, t2)〉, where cσ(ri, ti) is the fermionic
annihilation operator for an electron at position ri

time ti with spin σ, T is time ordering operator,
and the angle brackets denote the expectation value.
Given the fermionic nature of the quasiparticles
Fαβ(r1, t1; r2, t2) = −Fβα(r2, t2; r1, t1). Conventionally
this is taken to imply that if the quasiparticle pair is in
a spin singlet state then the pairing amplitude is even in
parity while if it is a spin triplet the pairing amplitude is
odd in parity. However, if the pairing amplitude is odd
in time, or, equivalently, odd in frequency, spin triplet
pairs can be even in parity and spin singlet pairs can be
odd in parity as was originally proposed for superfluid
3He by Berezinskii29 and later for superconductivity by
Balatsky and Abrahams30.

The study of odd-frequency superconductivity (SC)
has been hindered by the scarcity of experimental sys-
tems in which it can be realized. Soon after the origi-
nal suggestion that in general an odd-frequency pairing
term could be present it was realized that it would be
challenging to get such a term via electron-phonon in-
teractions and that a spin-dependent electron-electron

interaction would be necessary31. This fact greatly re-
stricts the number of systems in which odd-frequency SC
could be realized. However, in recent years it has be-
come apparent that odd-frequency SC can be obtained in
heterostructures9,12,14,15,32–39. Each of this works consid-
ered a different type of heterostructure. The recent im-
pressive explosion of the types of heterostructures that
can be realized has made this piecemeal approach unfea-
sible: a theoretical treatment able to provide the gen-
eral conditions in which odd-frequency SC should be
present in heterostructures has become necessary. In
this work we present such a general treatment. Our gen-
eral treatment also makes possible the identification of
novel, somehow unexpected, engineered systems in which
such pairing should be present, as exemplified by the het-
erostructure formed by one monolayer of MoS2 placed on
superconducting Pb, that we discuss in the second part
of the manuscript. In particular by showing what are the
necessary elements that a van der Waals heterostructure
must have to exhibit odd-frequency SC it adds this im-
portant class of systems to the odd-frequency playbook.
Our work also makes possible to select among such sys-
tems, the ones in which a direct observation – for ex-
ample via scanning tunneling microscopy (STS) and an-
gle resolved photoemission spectroscopy (ARPES) – of
the signatures due to odd-frequency SC is more readily
achievable.
The Hamiltonian (H) describing the most general het-

erostructure formed by a 2D electron gas (2DEG) and a
superconductor can be written as H = H2D +HSC +Ht

where

H2D =
∑

k,σ,σ′

c
†
k,σ [h0(k)σ0 + h(k) · σ]σ,σ′ ck,σ′ (1)

HSC =
∑

kσσ′

d
†
kσh

SC
σσ′ (k)dkσ′ +

∑

kσσ′

d
†
kσ∆kσσ′d

†
−kσ′ + h.c.

(2)

Ht = t
∑

k,σ

d
†
k,σck,σ + h.c. (3)
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are the Hamiltonians describing the 2DEG, the super-
conductor, and the tunneling between the two systems,
respectively. In Eqs. (1)-(3) σ0 is the identity matrix in
spin space, σ = (σ1, σ2, σ3) is the vector of Pauli matrices

in spin space, c†
k,σ (d†

k,σ) and ck,σ (dk,σ) are the creation
and annihilation operators, respectively, acting on the
fermionic states in the 2DEG (SC) layer with momentum
k and spin σ, h0(k) is the spin-independent part of H2D

and h(k) is the field that describes its spin-dependent
part due to an exchange field and/or spin-orbit coupling,
hSC
σ,σ′(k) describes the quasiparticle spectrum of the nor-

mal state of the superconductor, ∆k;σ,σ′ is the super-
conducting gap, and t is the tunneling between the 2D
system and the SC. We assume the tunneling to conserve
both spin and momentum given that this is the most com-
mon situation and to be able to identify the most general
condition to realize odd-frequency SC without having to
resort to spin-active interfaces that are often difficult to
realize experimentally. To keep the treatment general we
make no assumptions on the form of h(k), hSC

σ,σ′(k), and
∆k;σ,σ′ .
The anomalous Green’s function associated with the

superconductor described by Eq. (2) is given by F̂SC
k;iωn

=
[

∆̂†
−k

−
(

iωn + ĥSC(−k)∗
)

∆̂−1
k

(

iωn − ĥSC(k)
)]−1

.

We can parameterize this matrix in terms of singlet and
triplet parts:

F̂SC
k;iωn

=
(

sSC
k,iωn

σ0 + dk,iωn
· σ

)

iσ2 (4)

where ωn is the Matsubara frequency, and sSC
k,iωn

and

the three-component complex vector dk,iωn

40 give the
singlet and triplet superconducting amplitudes, respec-
tively. The leading order contributions to the proximity-
induced superconducting pairing in the 2DEG are given
by:

F̂ 2D
k;iωn

= t2 Ĝ2D
k;iωn

F̂SC
k;iωn

(

Ĝ2D
−k;−iωn

)T

(5)

where

Ĝ2D
k;iωn

=
(iωn − h0(k))σ0 + h(k) · σ

(iωn − h0(k))2 − |h(k)|2
(6)

is the Green’s function associated with the 2DEG.
It is convenient to separate the anoma-

lous Green’s function F̂ 2D
k;iωn

into two parts

F̂ 2D
k;iωn

= Ak;iωn

(

F odd
k;iωn

+ F even
k;iωn

)

where Ak;iωn
is

generally a function even in ωn
41, and F odd

k;iωn
and F even

k;iωn

are the odd- and even- frequency 2× 2 matrices describ-
ing the spin structure of the induced superconducting
pairs respectively.
Let h±(k) ≡ h(k)± h(−k). Then for F even

k;iωn
we find:

F even
k;iωn

=
(

Seven
k;iωn

σ0 +D
even
k;iωn

· σ
)

iσ2

where Seven
k;iωn

, Deven
k;iωn

are the singlet and triplet compo-

nents, respectively, given by:
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D
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4
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]
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(7)
The first line (three lines) of the expression for Seven

k;iωn

(Deven
k;iωn

) show that, as expected a singlet (triplet) pairing
is induced, via the proximity effect, in the 2DEG by a sin-
glet (triplet) superconductor, regardless of the value of h.
The last line for the expression of Seven

k;iωn
(Deven

k;iωn
) shows

that if h− 6= 0, by proximity effect, in the 2DEG we will
have even-frequency superconductivity with both singlet
and triplet pairing even if the substrate superconductor
only has singlet or triplet pairing. It also shows that the
strength of the pairing in the 2DEG with spin-structure
different from the one of the substrate is proportional to
h−(k) and is augmented when h− × h+ 6= 0. This re-
sult shows how the presence of spin-orbit coupling, that
gives rise to h− 6= 0, qualitatively affects the nature of
the conventional (even-frequency) superconducting pair-
ing induced by proximity. We then find that the interplay
of the field h in the 2DEG, and the superconducting pair-
ing in the substrate gives rise to an odd-frequency pairing
term:

F odd
k;iωn

= iωn

(

Sodd
k;iωn

σ0 +D
odd
k;iωn

· σ
)

iσ2

with Sodd
k;iωn

, Dodd
k;iωn

the odd-frequency singlet and triplet
components, respectively, given by:

Sodd
k;iωn

= −h+(k) · dk;iωn

D
odd
k;iω = −h+(k)s

SC
k;iωn

− ih−(k)× dk;iωn
.

(8)

This result clearly shows that it is possible to get an odd-
frequency singlet term provided the substrate is a triplet
superconductor with a d vector that is not perpendicular
to the even component of h, h+. Notice that because h

and d belong to different layers they are not constrained
to be in any specific relation. Eq. (8) also shows that
an odd-frequency triplet term will be present if both h+

and the singlet pairing in the substrate sSC are not zero,
as shown previously9,32,33. Eq. (8) therefore shows that
when h+ 6= 0, and h− = 0, by proximity effect, we will
have odd-frequency superconductivity in the 2DEG that
has the “opposite” spin structure from the superconduc-
tivity in the substrate: triplet if the substrate is a singlet
superconductor, singlet if the substrate is a triplet super-
conductor (with d not ortogonal to h+). A very inter-
esting and novel result is that even when h+ = 0, i.e. no
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FIG. 1. (Color online) a) Unit cell for a monolayer TMD.
A single monolayer is composed of three covalently bonded
layers trigonally coordinated with a layer of transition metal
sandwiched between two layers of chalcogen. b) Schematic
of a heterostructure formed by exfoliating a TMD monolayer
onto a superconductor. c) Sketch of the band structure of
a TMD monolayer with the d-electron bands appearing at
the K and K

′ points with a band gap of 1.8eV separating a
pair of spin-degenerate conduction bands from a pair of spin-
polarized bands. Notice that the polarization is different in
the two inequivalent valleys (K and K

′).

ferromagnetism is present in the 2DEG, we can have odd-
frequency superconductivity in the 2DEG, without having
to assume the presence of a spin-active interface, if the
2DEG has spin-orbit coupling, so that h− 6= 0, and the
substrate is a triplet superconductor with d not parallel
to h− (again, we emphasize that because h− and d be-
long to different layers they are not locked to each other).
This is a result that significantly enlarges the set of en-
gineered structures in which to look for odd-frequency
superconductivity by adding a whole new class of het-
erostructures. As we show below, a system that falls
into this class is a heterostructure formed by a group-VI
dichalcogenide monolayer and a superconductor’s surface
with Rashba spin-orbit coupling.

Transition metal dichalcogenides (TMDs), such as
molybdenum disulfide (MoS2) have recently received a
lot of attention due to their unusual electronic properties
and their potential for applications in electronics. MoS2
can be exfoliated down to monolayer 2D crystals4,42–44.
These monolayers have been shown to possess a direct
band gap of 1.8eV4,45, they can be gated4, and have ex-
hibited electron mobilities as high as 200 cm2V−1s−14.
Furthermore, the d-electron states exhibit a valley de-
gree of freedom that is coupled to the electron spin46–48.
In the context of our problem, this material is of great
interest not only because it is a two-dimensional mate-
rial that is readily available, easily manufactured and in-
corporated into heterostructures, but also because of its
strong spin-orbit coupling.

Consider the heterostructure shown in Fig. 1 composed
of a transition metal dichalcogenide (TMD) monolayer
on top of a superconductor. The low-energy electronic
states of an TMD monolayer are well described by the
following valley-dependent Hamiltonian46:

ĤTMD
k,λ =

[

aγ (λkxτ1 + kyτ2) +
u

2
τ3 − µτ0

]

⊗ σ0

−
λα

2
(τ3 − τ0)⊗ σ3

(9)

where τi are Pauli matrices acting on the orbital space
of the TMD monolayer, a is the lattice constant, γ is the
effective hopping integral, u is the energy gap between
the valence and conduction bands, α is the strength of
the spin-orbit coupling, λ = ±1 is the valley index (λ = 1
denotes the K valley, λ = −1 denotes the K ′ valley,
see Fig. 1), k = (kx, ky, 0) is a vector describing small
deviations from theK orK ′ point in k-space, and µ is the
chemical potential. For MoS2: a = 3.193 Å, γ = 1.10 eV,
u = 1.66 eV, and 2α = 0.15 eV46.
The Hamiltonian in Eq. (9) possesses four eigenstates

at the K and K ′ points; two spin-degenerate conduction
states separated by an eV-scale gap from two spin polar-
ized valence states, as shown in Fig. 1. For our analysis
the most interesting case is when MoS2 is hole doped.
For this reason in the following we will use an effective 2-
band model in which we include only the valence bands.
Considering the large gap between the valence and the
conduction bands this does not introduce any inaccuracy.
For small k the valence band Hamiltonian can be written
in spin space as:

ĤTMD
k,λ = −

(

a2γ2

u
k2 +

u

2
+ µ

)

σ0 + λασ3. (10)

Notice that, taking into account the valley index λ,
for the parity operator, P , acting on a function, f(k, λ)
we have Pf(k, λ) = f(−k,−λ). Using the notation
used in Eqs (7) and (8) we then find that in this

case h0(k) = −

(

a2γ2

u
k2 +

u

2
+ µ

)

, h+(k, λ) = 0, and

h−(k, λ) = 2λαẑ, where ẑ is the unit vector normal to
the TMD monolayer. Starting from the general Eqs (7)
and (8) we then find:

Seven
k,λ;iωn

=
(

ω2
n + ξ2k + α2

)

sSC
k,λ;iωn

− 2λαξkẑ · dk,λ;iωn

D
even
d,λ;iω =

(

ω2
n + ξ2k − α2

)

dk,λ;iωn
+ 2α2 (ẑ · dk,λ;iωn

) ẑ

− 2λαξks
SC
k,λ;iωn

ẑ

(11)
and

Sodd
k,λ;iωn

= 0

D
odd
k,λ;iω = −i2λαẑ × dk,λ;iωn

(12)

In accordance with Eq. (8) we find that, given that
h+ = 0, to get odd frequency superconductivity in the
TMD we need a substrate with non-zero triplet super-
conducting pairing. In general this situation is realized
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in non-centrosymmetric superconductors. Additionally,
this condition can be realized at the surface of centrosym-
metric singlet superconductors with spin-orbit coupling
since the surface breaks inversion symmetry leading to
the appearance of a Rashba spin-orbit term that in turn
induces a superconducting triplet component49. This is
expected to be the case for the surface of superconducting
Pb.

Considering the case in which the superconductor in
Fig. 1 (b) has Rashba spin-orbit coupling, the Hamilto-
nian matrix describing the single particle spectrum of the

superconductor is ĥSC(k) = ǫ
k
σ̂0 + ηẑ · (σ × k) where η

is the Rashba spin-orbit coupling in the superconductor
surface, ǫ

k
is the dispersion of the normal state quasi-

particles in the absence of spin-orbit coupling, and k is
the momentum measured from the Brillouin zone center.
Considering that the dominant pairing is intraband we
obtain41,49

F̂SC
k;iωn

=
∆

(sSC
k;iωn

)2 − |d
k
|2
(sSC

k;iωn

σ0 + d
k
· σ)iσ2 (13)

where ∆ is the substrate’s superconducting gap, sSC
k;iωn

=

∆2 +ω2
n+ ǫ2

k
+ η2k

2
and d

k
= 2ǫ

k
η(−ky, kx, 0). The key

point of Eq. (13) is that thanks to the Rashba spin-orbit
coupling induced by the breaking of the inversion sym-
metry at the surface of the Pb substrate a triplet term
appears in the F̂SC and that in addition the d vector for
such triplet component is perpendicular to the field h− in
the TMD monolayer. The interplay of such triplet com-
ponent with the spin-orbit cupling of the TMD mono-

layer gives rise to odd-frequency SC in the TMD.

With the above definitions we can follow the same
steps leading to Eqs 8 and 7 and obtain the lead-
ing order contribution to the proximity-induced anoma-
lous Green’s function in the TMD layer as F̂TMD

k,λ;iωn
=

ATMD
k,λ;iωn

(

F odd
k,λ;iωn

+ F even
k,λ;iωn

)

where

ATMD
k,λ;iωn

=
∆t2

[(iωn − ξk)2 − α2]2[(sSC
k+Kλ;iωn

)2 − |dk+Kλ
|2]

.

For the even-frequency singlet and triplet components of
F̂TMD we find:

Seven
k,λ;iωn

=
(

ω2
n + ξ2

k
+ α2

)

sSC
k+Kλ;iωn

D
even
k,λ;iω = −

(

ω2
n + ξ2

k
− α2

)

dk+Kλ
− 2λαξks

SC
k+Kλ;iωn

ẑ

(14)
Given that h+ = 0, see Eq. (12), the odd-frequency sin-
glet component vanishes whereas for the triplet compo-
nent we find:

D
odd
k,λ;iω = i4λαηǫk+Kλ

(k+Kλ) (15)

where Kλ is the momentum vector at the K (K ′) point
for λ = 1 (λ = −1). Eq. (15) shows that in the TMD the

odd-frequency triplet component has a d-vector pointing
in the direction of the momentum. One can verify that
this corresponds to an equal-spin spin triplet amplitude
given by FTMD

↑↑/↓↓ ∼ iωnηαǫkλ
(

ky ± ikx
)

which is propor-

tional to the product of the spin-orbit couplings in the
two materials. Consistent with the general case, we see
that the emergence of this term requires the spin-orbit
couplings in the two media to be non parallel.
Our results add a new class of systems, Van der Waals

(VdW) heterostructures, to the odd-frequency playbook.
Van der Waals systems have many advantages: i) the
2DEG in which odd-frequency pairing is present lives in a
layer with an exposed surface, a fact allows for ideal STS
and ARPES measurements; ii) as shown by the example
of the MoS2/Pb heterostructure, it is possible to realize
VdW systems with no ferromagnetic layers, or spin-active
interfaces that exhibit odd-frequency SC; iii) the 2DEG
in which odd-frequency pairing is present can be just one
atom thick, this fact removes many of the complications
associated with the interpretation of STS and ARPES
data done in heterostructures in which each layer is sev-
eral nanometers thick; iv) because the top layer is just
one atom thick the electrons are truly confined in 2D,
this fact, combined with the fact that according to our
results the top layer can be a semiconductor, rather than
a ferromagnetic metal as in previous proposals, ensures
that the DOS of the normal state is quite low and there-
fore allows for an easier observation of the features in the
DOS due to the presence of odd-frequency pairing.
In conclusion, in this work we investigated the symme-

tries of proximity-induced superconducting pairing am-
plitudes in a 2DEG coupled to a superconductor. We
arrived at a general expression relating the induced pair-
ing amplitudes to the components of the anomalous
Green’s function of the superconducting substrate and

the elements of the 2DEG Hamiltonian matrix, ĥ(k) =
h0(k)σ̂0 +h(k) ·σ. We have shown that the interplay of
the spin-orbit coupling in the 2DEG and the supercon-
ducting pairing of the substrate can give rise, via prox-
imity effect, to unusual superconducting pairings in the
2DEG. We find that even when no ferromagnetism is
present in the 2DEG, and there is no spin-active inter-
face, odd-frequency superconductivity can be induced in
the 2DEG provided the 2DEG has spin-orbit coupling
and the substrate has some triplet superconductivity.
We then showed that this condition can be realized in
a MoS2/Pb heterostructure. This result, combined with
the general equations that we obtain, adds a new class of
systems, Van der Waals (VdW) heterostructures, to the
odd-frequency playbook.
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