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We develop a framework for studying the well-known universal term in the Rényi entropy for
an arbitrary entangling region in four-dimensional conformal field theories that are holographically
dual to gravitational theories. The shape dependence of the Rényi entropy Sn is described by
two coefficients: fb(n) for traceless extrinsic curvature deformations and fc(n) for Weyl tensor
deformations. We provide the first calculation of the coefficient fb(n) in interacting theories by
relating it to the stress tensor one-point function in a deformed hyperboloid background. The latter
is then determined by a straightforward holographic calculation. Our results show that a previous
conjecture fb(n) = fc(n), motivated by surprising evidence from a variety of free field theories and
studies of conical defects, fails holographically.

INTRODUCTION

Quantum entanglement has been playing an increas-
ingly dominant role in understanding complex systems in
a diverse set of areas including condensed matter physics
[1–3], quantum information [4], and quantum gravity [5–
14]. One measure of entanglement is the von Neumann
entropy for the density matrix of a subsystem, also known
as the entanglement entropy.

A different set of measures of entanglement is provided
by the Rényi entropies Sn labeled by an index n, a one-
parameter generalization of the von Neumann entropy
[15]. However, they are much easier to experimentally
measure [16–18] and numerically study [19–21] than the
von Neumann entropy. They also contain much richer
physical information about the entanglement structure of
a quantum state, and knowing Rényi entropies for all n
allows one to reconstruct the whole entanglement spec-
trum, i.e. the set of eigenvalues of the density matrix.
Rényi entropies have been extensively studied in various
contexts including spin chains [22], tensor networks [23],
free field theories [24], conformal field theories (CFTs)
[25, 26], and gauge/gravity duality [27, 28]. Furthermore,
Rényi entropy at index n = 1/2 gives the entanglement
negativity which is a measure of the distillable entangle-
ment contained in a quantum state [29].

In any d-dimensional CFT on a generally curved back-
ground, the Rényi entropy for a spatial region A is ul-
traviolet (UV) divergent. Organized by the degree of
divergence, the Rényi entropy may be written as

Sn = γ(0)
n

Area(Σ)

εd−2
+ · · ·+ Suniv

n + · · · , (1)

where Σ ≡ ∂A is the entangling surface and ε is a short
distance cutoff. The first set of dots in (1) denotes terms
with subleading power-law divergences. The term Suniv

n

is universal in the sense that it does not depend on the

detail of the UV cutoff, whereas coefficients such as γ
(0)
n

are scheme-dependent and non-universal.
In odd spacetime dimensions, the universal term is in-

dependent of ε but depends nonlocally on the (intrinsic

and extrinsic) shape of the entangling surface. In even
dimensions, however, Suniv

n is proportional to ln ε and the
universal coefficient is a linear combination of conformal
invariants built from integrals of local geometric quanti-
ties over the entangling surface.

In two dimensions, the universal term is completely
determined by the central charge: [25, 26, 30, 31]

Suniv
n = − c

12

(
1 +

1

n

)
Area(Σ) ln ε . (2)

In this case the most general region is a union of m in-
tervals, and the area of Σ is simply 2m, the number of
points in Σ. In three dimensions, the universal term in
the entanglement entropy for spherical regions is iden-
tified with the well-known free energy F on the sphere
[32–34].

In this paper we focus on four-dimensional (4D) CFTs
in curved spacetime, where the universal term in the
Rényi entropy (1) can be written as [35]

Suniv
n =

[
fa(n)

2π
RΣ +

fb(n)

2π
KΣ −

fc(n)

2π
CΣ
]

ln ε . (3)

Here fa, fb, and fc are coefficients that depend on n, and
we have defined three conformal invariants

RΣ ≡
∫

Σ

d2y
√
γRΣ , CΣ ≡

∫
Σ

d2y
√
γCabab , (4)

KΣ ≡
∫

Σ

d2y
√
γ

[
trK2 − 1

2
(trK)2

]
, (5)

where y, γ, RΣ and K are the coordinates, induced met-
ric, intrinsic Ricci scalar, and extrinsic curvature tensor
of Σ, and Cabab denotes the contraction of the Weyl ten-
sor projected to directions orthogonal to Σ.

Entanglement entropy can be studied by taking the
n → 1 limit. In this limit, the universal term is com-
pletely determined by the central charges of the CFT
that appear in the Weyl anomaly: [36]

fa(1) = a , fb(1) = fc(1) = c . (6)
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Away from n = 1, the coefficients fa, fb, and fc are
generally not determined from the central charges. They
depend on more physical data of the CFT. It was noticed
that fa can be extracted by considering a spherical entan-
gling region, in which case it is determined by the thermal
free energy of the CFT on a hyperboloid [28]. The coef-
ficient fc may be obtained by considering a small shape
deformation and working to first order in the deforma-
tion. This involves the stress tensor one-point function
on the hyperboloid background, which is related to the
thermal free energy. In this way it was shown in [37] that
fc is determined by fa:

fc(n) =
n

n− 1
[a− fa(n)− (n− 1)f ′a(n)] . (7)

It is also known that fb is in principle determined by
working to second order in the shape deformation [37].
Similar perturbative calculations were performed in other
contexts in [38–41].

The main goal of this paper is to determine fb by using
gauge/gravity duality [42–44]. Our basic strategy is to
relate fb to the stress tensor one-point function in a de-
formed version of the hyperboloid background. The lat-
ter is then determined by a straightforward holographic
calculation.

It was conjectured in [45] that

fb(n) = fc(n) (8)

is a universal property of all 4D CFTs for all n. The ev-
idence includes the surprising fact that it seems to hold
in any free field theory involving an arbitrary number
of scalars and fermions [45]. There have been recent at-
tempts to prove or use this conjecture [37, 46–49]. In
particular, it was shown in [48] to be equivalent to a
conjectural relation between the universal contribution
to the Rényi entropy from a small conical singularity on
the entangling surface and the conformal dimension hn
of the twist operator. It was further shown in [49] that
(8) is equivalent to another conjecture relating hn to the
two-point function of a displacement operator for twist
operators. However, we will prove here that this con-
jecture fails for holographic theories. We will see this
by calculating fb(n) either numerically for arbitrary n or
analytically by an expansion in n− 1.

RÉNYI ENTROPY FROM THE REPLICA TRICK

We use the replica trick to calculate the Rényi entropy

Sn ≡
1

1− n
ln tr ρn (9)

of some region A with the density matrix ρ. For an inte-
ger n > 1, it may be obtained from

Sn =
lnZn − n lnZ1

1− n
, (10)

where Zn is the partition function of the field theory on
a suitable manifold known as the n-fold branched cover.

To study this concretely, we adopt a coordinate system
similar to the Gaussian normal coordinates in a neighbor-
hood of the entangling surface Σ. It is a codimension-2
surface, and on it we choose an arbitrary coordinate sys-
tem {yi, i = 1, 2, · · · , d − 2}. From each point on Σ we
may find a one-parameter family of geodesics orthogonal
to Σ. Let us denote the parameter by τ and employ the
coordinates (ρ, τ, yi) in a neighborhood of Σ, where ρ is
the radial distance to Σ along such a geodesic. Choosing
the parameter τ judiciously [50] so that its range is fixed
as 2π, we find that the metric in the neighborhood of Σ
is

ds2 = dρ2 +Gττdτ
2 +Gijdy

idyj + 2Gτidτdy
i , (11)

where regularity at ρ = 0 requires the expansions

Gττ = ρ2
[
1 + Tρ2 +O(ρ3)

]
, (12)

Gij = γij + 2Kaijx
a +Qabijx

axb +O(ρ3) , (13)

Gτi = ρ2 [Ui +O(ρ)] . (14)

Here x1,2 ≡ ρ(cos τ, sin τ) are the coordinates orthogonal
to Σ, and Latin indices such as a and b denote these two
directions, while T , γij , Kaij , Qabij , and Ui are expansion
coefficients that generally depend on yi. In particular, γij
and Kaij are the induced metric and extrinsic curvature
tensor of Σ.

Since the metric (11) is periodic under τ → τ + 2π, we
may define a different manifold by extending the range
of τ from 2π to 2πn as long as n is an integer. This
defines the n-fold branched cover. It has a conical excess
at ρ = 0 (i.e. the entangling surface Σ), which we regulate
by introducing a short distance cutoff at ρ = ε.

It is useful to rewrite the conformal invariants appear-
ing in (4) and (5) as

trK2 − 1

2
(trK)2 = KaijK

aij − 1

2
KaK

a , (15)

Cabab =
RΣ

3
− 2T − 2

3
UiU

i − 1

3
KaK

a +
1

3
Q ai
a i , (16)

where Ka ≡ K i
ai is the trace of the extrinsic curvature

tensor. We always use the induced metric γij to raise
and lower Latin indices i, j on K, Q, and U .

DEFORMED HYPERBOLOID

For a spherical entangling region in the vacuum state
of a CFT, the Rényi entropy can be determined by con-
formally mapping the problem to one of finding the free
energy of the CFT on a unit hyperboloid with temper-
ature T = 1/2πn [28]. A spherical entangling surface
has vanishing KΣ and CΣ, so its Rényi entropy gives fa
but not fb or fc. To obtain the latter two coefficients,
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we consider small shape deformations of Σ away from a
perfect sphere. It is most convenient to choose the un-
deformed entangling surface as a flat plane (i.e. a sphere
with infinite radius) with

G(0)
ττ = ρ2 , G

(0)
ij = δij , G

(0)
τi = 0 , (17)

and treat terms in (12-14) such as the extrinsic curvature
K as shape deformations.

We may perform an arbitrary Weyl transformation
gµν = Ω2Gµν on the metric (11) without affecting the
Rényi entropy. This is because the change of the par-
tition function under a Weyl transformation is governed
by the Weyl anomaly, which is an integral of local geo-
metric invariants. Such terms cancel between lnZn and
n lnZ1 in the Rényi entropy (10), because locally the n-
fold branched cover is identical to the original spacetime
manifold on which the field theory is defined (away from
the conical excess Σ) [51].

Let us therefore consider the conformally equivalent
metric gµν = Gµν/ρ

2:

ds2 =
dρ2 +Gττdτ

2 +Gijdy
idyj + 2Gτidτdy

i

ρ2
. (18)

In the undeformed case (17), the metric (18) simplifies
to

ds2
(0) = g(0)

µν dx
µdxν = dτ2 +

dρ2 + δijdy
idyj

ρ2
, (19)

which describes Hd−1 × S1, a product of the (d − 1)-
dimensional hyperbolic space of unit radius and the τ
circle of size 2πn. For simplicity we call this product
space the hyperboloid background and refer to it as Hd

n.
In the general case of (12-14), we view the metric (18)

as a deformed version of the hyperboloid background:

gµν = g(0)
µν + δgµν . (20)

We call this the deformed hyperboloid background and
refer to it as H̃d

n.
Our basic strategy for calculating the Rényi entropy is

to perturbatively calculate the partition function on the
deformed hyperboloid background using the fact that the
change of the partition function is governed by the stress
tensor one-point function:

δ lnZn =
1

2

∫
ddx
√
g〈Tµν〉δgµν . (21)

fb FROM THE STRESS TENSOR

We now work in four dimensions and show that the
coefficient fb is determined by the stress tensor one-point
function in the deformed hyperboloid background to first
order in the extrinsic curvature K. Our basic idea is that

(21) relates the second-order variation of the partition
function to the first-order variation of the stress tensor
one-point function.

Since our goal is to calculate fb, we isolate it by turn-
ing on a small traceless extrinsic curvature tensor K. It
is clear from (16) that such a traceless K does not con-
tribute to Cabab or CΣ. Neither does it contribute to RΣ,
a topological invariant of the 2-dimensional entangling
surface. Therefore, such a deformation allows us to easily
extract fb. It is worth noting that we can always make
K traceless by performing a suitable Weyl transforma-
tion. Therefore we realize a traceless K perturbation by
deforming the entangling surface away from a flat plane
and applying an appropriate Weyl transformation to re-
move the trace of K.

In the hyperboloid background deformed by a trace-
less K, the stress tensor one-point function along the yi

directions is

〈T ij〉H̃4
n

= ρ2
[
Pnδ

ij + αnK
ij
a xa +O(ρ2)

]
, (22)

where Pn and αn are n-dependent coefficients to be deter-
mined. The first term Pnδ

ij is the stress tensor one-point
function in the perfect hyperboloid background, whereas
the second term contributes to the universal term KΣ in
(3) and determines fb.

Inserting (22) into (21) with δgµν given by a variation
of the traceless extrinsic curvature

δgij =
2δKaijx

a

ρ2
, (23)

we find

δ lnZn = 2πnαn

∫
ε

dρ

ρ3

∫
Σ

d2y
√
γK ij

a δKbijx
axb +O(ρ3)

= −πnαn ln ε

∫
Σ

d2y
√
γKaijδKaij + · · · , (24)

where the dots denote terms that are finite as ε → 0.
Here ε plays the role of an infrared (IR) regulator on the
infinite hyperboloid. Integrating (24) in K, we obtain
the O(K2) term in the logarithmically divergent part of
the partition function

lnZn|K2 = −πnαn
2

ln ε

∫
Σ

d2y
√
γKaijKaij . (25)

Inserting this into (10) and comparing it with (3), we
arrive at

fb(n) = π2n
αn − α1

n− 1
. (26)

This result shows that fb is completely determined by
the coefficient αn appearing in the stress tensor one-point
function (22) in the deformed hyperboloid background.

For completeness it is worth mentioning that the coef-
ficient fc is determined by Pn appearing in the stress ten-
sor one-point function in the perfect hyperboloid back-
ground:

fc(n) = −3π2n
Pn − P1

n− 1
. (27)



4

This relation can be shown by using (21) with a shape
deformation that affects CΣ but not KΣ [37]. Con-
sidering for example the deformation given by δgij =
Qabijx

axb/ρ2, we obtain

lnZn|Q = −πnPn
2

ln ε

∫
Σ

d2y
√
γQ ai

a i . (28)

Inserting this into (10) and comparing it with (3) with
the help of (16), we obtain (27).

It is worth noting that the above results can be repro-
duced by similar calculations in the conical background
(11). This involves reversing the Weyl transformation
(18) and finding the stress tensor one-point function in
(11) from (22). There is an anomalous contribution
which is analogous to the Schwarzian derivative in 2-
dimensional CFTs, but it depends locally on the geom-
etry and cancels between lnZn and n lnZ1 in the Rényi
entropy (10).

HOLOGRAPHIC CALCULATION

To obtain the coefficient fb, we still need to calculate
αn in the stress tensor one-point function (22). Here we
finish this last step using gauge/gravity duality. Let us
consider a holographic CFT dual to a gravitational the-
ory in a bulk spacetime with one additional dimension.
The CFT lives on the asymptotic boundary of the bulk
spacetime, and expectation values of local operators such
as the stress tensor in the CFT are determined by the
asymptotic behaviors of the corresponding fields such as
the metric in the bulk.

The bulk metric that asymptotes to the deformed hy-
perboloid background (18) is: [52]

ds2
bulk =

dr2

f(r)
+ f(r)dτ2 +

r2

ρ2

{
dρ2

+ [δij + 2k(r)Kaijx
a] dyidyj

}
+ · · · , (29)

where we have focused on deformations by a traceless ex-
trinsic curvature tensor K, and the dots denote higher-
order terms in ρ. This metric describes a deformed (Eu-
clidean) hyperbolic black hole. We choose the bulk coor-
dinates using orthogonal geodesics originating from the
black hole horizon (a codimension-2 surface), similar to
the procedure described above (11). The metric (29) is
uniquely fixed at this order in ρ by the bulk equations
of motion up to diffeomorphisms. In cases where the
five-dimensional bulk is governed by Einstein gravity, the
blackening factor f(r) is

f(r) = r2 − 1− r2
h(r2

h − 1)

r2
(30)

as determined by Einstein’s equations in the metric (29)
to leading order in ρ. Here rh is the location of the hori-
zon and determined as a function of n by the larger root

of

n =
2

f ′(rh)
=

rh
2r2
h − 1

. (31)

To see this, we impose regularity at the horizon with the
range of τ being 2πn.

Expanding Einstein’s equations in the metric (29) to
next order in ρ, we find a second-order differential equa-
tion for the function k(r):

k′′(r) +

[
3

r
+
f ′(r)

f(r)

]
k′(r)− r2 + f(r)

r2f(r)2
k(r) = 0 . (32)

Generic solutions to this equation behave like (r−rh)±n/2

near the horizon. Regularity of the extrinsic curvature
deformation in (29) therefore demands k(r) ∼ (r−rh)n/2

near r = rh. The solution to (32) is uniquely determined
by this IR boundary condition and the UV boundary
condition limr→∞ k(r) = 1. Expanding the solution near
the asymptotic boundary, we find

k(r) = 1− 1

2r2
+
βn
r4

+O
(

1

r6

)
, (33)

where βn is the coefficient of the normalizable mode and
not fully determined by analysis near the asymptotic
boundary.

The stress tensor one-point function in the CFT is de-
termined by the asymptotic expansion of the bulk metric.
Using the results of [53], we find (22) with

Pn =

(
r2
h − 1

2

)2
16πGN

, αn =
4βn − r4

h + r2
h + 1

4

8πGN
, (34)

where GN denotes Newton’s constant. Inserting these
values into (26) and (27), we obtain

fb(n) =
n(4βn − 4β1 + r2

h − r4
h)

n− 1
c , (35)

fc(n) =
3n(r2

h − r4
h)

2(n− 1)
c , (36)

where we have used the relation c = π/8GN and that
rh = 1 when n = 1 according to (31).

It remains to determine the coefficient βn. We solve
the differential equation (32) numerically and plot the
resulting fb(n) against fc(n) in Fig. 1. They coincide at
n = 1 but not generally. It is worth noting that their
difference is quite small for a large range of values of
n, raising the question of whether the numerical proof of
fb(n) = fc(n) in [45] for free field theories was established
with sufficient accuracy [54].

Alternatively, we can solve (32) perturbatively in n−1.
To do this we define

h(r) ≡ k(r) exp

[∫ ∞
r

dr

f(r)

]
, (37)
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FIG. 1. Plots of fb(n) against fc(n) in units of the central
charge c in holographic CFTs. In the left logarithmic plot we
show both of them for the range 0.5 ≤ n ≤ 10. We show their
difference more clearly in the right plot.

and the differential equation (32) becomes

h′′(r) +

[
3

r
+

2 + f ′(r)

f(r)

]
h′(r) +

3r − 1

r2f(r)
h(r) = 0 . (38)

The advantage of working with h(r) is that the regularity
condition at the horizon simply requires h(rh) to be finite.
Expanding in n− 1, we find

h(r) =
r + 1

r
+ (n− 1)h1(r) + (n− 1)2h2(r) + · · · , (39)

where

h1(r) =
r + 1

r
ln

(
r + 1

r

)
− 6r2 + 3r − 1

6r3
, (40)

h2(r) =
r + 1

2r
ln2

(
r + 1

r

)
− 6r2 + 3r − 1

6r3
ln

(
r + 1

r

)
+

216r3 − 85r + 27

432r5
.

(41)

From the asymptotic behaviors of these functions we ob-
tain

βn = −1

8
+
n− 1

12
− 67(n− 1)2

432
+O(n− 1)3 . (42)

Inserting this into (35) we arrive at

fb(n) =

[
1− 11

12
(n− 1) +O(n− 1)2

]
c , (43)

which agrees with

fc(n) =

[
1− 17

18
(n− 1) +O(n− 1)2

]
c (44)

when n = 1 but not for general n.
Similar perturbative techniques can be used in the

small n limit:

fb(n) =
1 +O(n)

16n3
c , fc(n) =

3 +O(n)

32n3
c , (45)

or in the large n limit, leading to

fb(n) ≈ 0.3800c+O(n−1) , fc(n) =
3

8
c+O(n−1) . (46)

DISCUSSION

The universal coefficient fb governs the variation of the
Rényi entropy under traceless extrinsic curvature defor-
mations in 4D CFTs. We have seen that it is entirely
determined by the stress tensor one-point function in the
deformed hyperboloid background, which we have calcu-
lated holographically. Surprisingly, our results disprove
the fb(n) = fc(n) conjecture. It is worth exploring why
this relation seems to hold for free field theories but fails
holographically.

The coefficient fb is not only related to the stress ten-
sor one-point function, but also connected to the uni-
versal contribution to the Rényi entropy from a conical
entangling surface and the two-point function of a dis-
placement operator for twist operators. A more general
conjecture, proposed in two equivalent ways in [48, 49] for
an arbitrary CFT in any dimensions, relates the universal
conical contribution and the displacement operator two-
point function to the conformal dimension of the twist
operator. This conjecture is equivalent to fb(n) = fc(n)
in four dimensions and therefore is also disproved by our
holographic results. However, it is worth studying this
conjecture in other dimensions, either using an analog
of the techniques developed here or applying the area-
law prescription for holographic Rényi entropy recently
proposed in [55].

It is worth exploring why the violation of the fb(n) =
fc(n) conjecture in holographic CFTs appears small for
a large range of values of n. It opens up the possibility
that the conjecture holds approximately and provides a
simple method of calculating fb from fc with reasonable
accuracy. Finally, our results form a step towards study-
ing the shape dependence of entanglement and Rényi en-
tropies in many other contexts and dimensions.
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