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The sign problem is a major obstacle in quantum Monte Carlo simulations for many-body fermion
systems. We examine this problem with a new perspective based on the Majorana reflection posi-
tivity and Majorana Kramers positivity. Two sufficient conditions are proven for the absence of the
fermion sign problem. Our proof provides a unified description for all the interacting lattice fermion
models previously known to be free of the sign problem based on the auxiliary field quantum Monte
Carlo method. It also allows us to identify a number of new sign-problem-free interacting fermion
models including, but not limited to, lattice fermion models with repulsive interactions but without
particle-hole symmetry and interacting topological insulators with spin-flip terms.

PACS numbers: 02.70.Ss, 71.10.Fd, 71.27.+a

Introduction: A major difficulty in the study of
strongly correlated systems is the exponentially large
many-body Hilbert spaces which are usually difficult to
handle by analytic methods. Unbiased numerical meth-
ods are therefore indispensable. Among various nu-
merical approaches, the quantum Monte Carlo (QMC)
method can yield accurate results by taking stochastic
but importance sampling over very small but represen-
tative portions of the many-body Hilbert space. An ad-
vantage of QMC is that it is scalable with the system
size if there is no sign problem. Unfortunately, the sign
problem exists in most interacting fermion and frustrated
quantum spin systems.

The origin and manifestation of the sign problem vary
in different QMC algorithms. A frequently used algo-
rithm for lattice fermions is the auxiliary field determi-
nantal method [1, 2], in which the interaction terms are
decoupled by the Hubbard-Stratonovich (HS) transfor-
mation into a superposition of quadratic fermion terms
in the background of imaginary-time-dependent auxiliary
fields. The fermion operators are then integrated out,
yielding a fermion determinant which serves as the sta-
tistical weight for each HS field configuration. The sign
problem emerges because this determinant is not always
positive. In particular, the average value of the signs of
these determinants often becomes exponentially small in
the thermodynamic limit at low temperatures. This leads
to uncontrollable statistical errors and ruins the calcula-
tion of QMC. Although a great deal of efforts have been
made to solve, at least partially, this problem [3–12], a
general solution is still lacking[13].

For certain classes of lattice fermion models, QMC sim-
ulations are proved to be sign-problem-free. Familiar ex-
amples include the positive-U Hubbard model on a bi-
partite lattice at half-filling [2], the negative-U Hubbard
model [2, 14], and their SU(2N) generalizations [15–17].

The half-filled Kane-Mele-Hubbard model of interacting
topological insulators is also sign-problem-free [18, 19].
For these models, after suitable HS decompositions with
the Kramers time-reversal (TR) invariance [20, 21], each
determinant is factorized into a product of two complex
conjugate determinants defined in two subspaces with op-
posite spins. A number of non-factorizable models, such
as the multi-component and multi-band Hubbard mod-
els [22–24], the negative-U Hubbard models with spin-
orbit coupling [25, 26], can also be shown to be free of
the sign problem. In these systems, instead of the de-
terminant itself being factorizable, the eigenvalues of the
corresponding matrix are complex-conjugate paired, and
real eigenvalues are doubly degenerate, thus the deter-
minant is non-negative valued. Recently, the Majorana
HS decomposition was introduced in QMC simulations
[27, 28]. It is applied to spinless fermion models with re-
pulsive interactions at the particle-hole symmetric point.
For some of the above mentioned models, the positivity
of fermion determinants can be understood from the al-
gebraic structure of the orthogonal split group O(N,N)
[29, 30].

The sign structures of the ground state wavefunctions
of quantum lattice models are closely related to the re-
flection positivity of the Hamiltonian. The concept of
reflection positivity was first introduced in the context of
quantum field theory [31]. Its main application in con-
densed matter physics started from Lieb’s work on the
spin reflection positivity in the Hubbard model [32, 33],
and was recently applied to systems with Majorana re-
flection positivity [34–36]. For interacting fermion sys-
tems with these reflection positivities, it can be shown
that their ground state wavefunctions are non-negative
under certain suitably defined basis. However, these ba-
sis states are often non-local in real space, which is in-
convenient for use in QMC simulations.
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In this paper, we explore the QMC sign problem of
lattice fermions from the perspective of Majorana reflec-
tion positivity and Majorana Kramers positivity defined
below. We use the Majorana fermion representation, be-
cause it allows any fermionic systems, whether fermion
number conserving or not, to be treated on equal foot-
ing. In the framework of the determinantal QMC algo-
rithm, the statistical weight in the sampling is replaced
by the trace of exponentials of fermion bilinears result-
ing from the HS decomposition, which is evaluated as a
determinant. A HS decomposition is said to be a “posi-
tive decomposition” if all the generated determinants are
positive semidefinite. Below we show that there are at
least two kinds of positive decompositions which lead to
QMC simulations free of the sign problem. We dub them
Majorana reflection positive decomposition andMajorana
Kramers positive decomposition, respectively. These do
not exhaust all positive decompositions. They do, how-
ever, cover nearly all the interacting lattice fermion mod-
els that are previously known to be sign-problem-free.
From these decompositions, we also identify a number of
new models which are free of the sign problem.
Let us begin with the determinantal QMC algorithm

for a general lattice model of Dirac fermions. The Hamil-
tonian H is a sum of a quadratic kinetic energy term
H0 and an interaction term of 4-fermion operators HI

[1, 2, 37]. After the HS decomposition, the partition
function Z is expressed as

Z = Tre−βH = lim
M→∞

∑

p

ρp (1)

ρp = Tr

M
∏

k=1

e−τH0e−τHI(ηk), (2)

where β is the inverse temperature, τ =
β/M is the discrete time interval, and p =
{ηM ({i}), ..., ηk({i}), ..., η1({i}), i = 1, · · · , N} rep-
resents a time-sequence of the HS-field distributions,
with N the lattice size. The decoupled interaction
HI(ηk) contains only two-fermion terms, and depends on
the time-step size, τ , and the spatial distribution of the
HS fields, ηk({i}). The value of ρp can be determined
by tracing out the fermion degrees of freedom in H0

and HI . The formula for determining ρp is given in
Supplemental Material (SM)-I.
At each lattice site, a Dirac fermion can be repre-

sented using two Majorana fermions. Thus the original
N Dirac fermions can be expressed in terms of 2N Ma-
jorana fermions. We divide these 2N Majorana fermions

into two groups, γ
(1)
i and γ

(2)
i (1 ≤ i ≤ N), and define

their Clifford algebra operators as[36]

Γ+
α = i[

m
2
]γ

(1)
i1

...γ
(1)
im

, Γ−
α = (−i)[

m
2
]γ

(2)
i1

...γ
(2)
im

, (3)

where α represents a sequence {i1, i2, ..., im} with 1 ≤
i1 < ... < im ≤ N , and [x] equals the largest integer less

than or equal to x. Γ±
α is said to be even (odd) if m is

even (odd). The reflection operation θ is defined as an

anti-linear automorphism map: θ(i) = −i, θ(γ
(1)
i ) = γ

(2)
i

and θ(γ
(2)
i ) = γ

(1)
i . Clearly, θ2 = 1 and θ(Γ±

α ) = Γ∓
α . A

bosonic operator O is Majorana reflection symmetric if
θ(O) = O, and is Majorana reflection positive if it further
satisfies the condition [34, 35].

Tr[Q ◦ θ(Q)O] ≥ 0, (4)

where Q =
∑

α cαΓ
+
α is an arbitrary operator in the al-

gebra spanned by the Γ+-matrices with cα’s the complex
coefficients, and Q ◦ θ(Q) =

∑

αβ cαc
∗
βΓ

+
αΓ

−
β .

In the Majorana representation, the bilinear terms in
the expression of ρp, including H0 and HI(τk), each can
be expressed as

Hbl = γTV γ, (5)

where γT = (γ
(1)
i , γ

(2)
i )T and V is an 2N × 2N anti-

symmetric matrix. V is the coefficient matrix of H0 or
HI(τk) in the Majorana representation.
Majorana reflection positive decomposition: V is de-

fined as a Majorana reflection positive kernel if it can be
represented as

V =

(

A iB
−iBT A∗

)

, (6)

where A and B are N × N matrices. A is complex
anti-symmetric satisfying AT = −A. B = B† is a
Hermitian matrix which is either positive semidefinite
or negative semidefinite. (B can be either positive or
negative semidefinite because, after a gauge transforma-

tion γ
(2)
j → −γ

(2)
j , B becomes −B and A remains un-

changed.) A HS decomposition satisfying this condition
will be called a Majorana reflection positive decomposi-
tion.

Theorem 1 ρp is positive semi-definite if all the coeffi-
cient matrices of the bilinear fermion terms in Eq. (2)
are Majorana reflection positive kernels.
This theorem can be proved in two steps. The first

is to show that, if V is a Majorana reflection positive
kernel, then exp(−τγTV γ) is reflection positive. A proof
on this was actually already given in Ref. [35]. This
means that ρp is just the trace of a product of a series of
reflection positive operators determined by the exponen-
tials of the bilinear fermion operators H0 and HI(ηk) in
Eq. (2). The second step is to show that the product of
a series of reflection positive operators is also reflection
positive and its trace is non-negative. A proof of this, as
a lemma, is given in SM-II. Combining the above results,
we have ρp ≥ 0. Thus the system is sign-problem-free in
QMC simulations if all the kernels in Eq. (2) are Ma-
jorana reflection positive. The Majorana reflection can
be regarded as a generalization of the PT transformation



3

discussed in Refs [38, 39]. However, this symmetry alone
does not leads to the positivity of ρp. For example, if B
is not positive semidefinite, exp(−τγTV γ) remains Ma-
jorana reflection symmetric, but is no longer Majorana
reflection positive. In this case, ρp is not always positive
definite.
Despite its seeming simplicity, Theorem 1 covers all

two and higher dimensional interacting fermion models
previously known to be sign-problem-free in determinan-
tal QMC simulations, without imposing explicitly the
TR-invariance in the HS decomposition. These include
the Hubbard model and its variations [2, 18, 19], the
interacting spinless fermion model [27, 28], and other
models whose coefficient matrices in the Dirac fermion
representation have the orthogonal split O(N,N) group
algebra structure [29]. Below we discuss two such ex-
amples, one for spinless fermions and the other for spin
one-half systems, and prove they are sign problem free in
new parameter regions unknown before.
The first example is an interacting spinless fermion

model defined on a bipartite lattice. The model Hamil-
tonian is

H0 = −
∑

i,j∈A

c†iB1,ijcj +
∑

i,j∈B

c†iB2,ijcj

+
∑

i∈A,j∈B

(

c†iFijcj + h.c
)

, (7)

HI =
∑

ij

Vij

(

ni −
1

2

)(

nj −
1

2

)

, (8)

where ni = c†i ci. B1 and B2 are real symmetric matrices,
both of which are positive semidefinite (or, equivalently
negative semidefinite). F is an arbitrary real matrix.
Vij ≥ 0 if i and j belong to different sublattices, and
Vij ≤ 0 otherwise.
HI can be decomposed into a bilinear form by taking

the following HS transformation

e−τVij(ni−
1

2 )(nj−
1

2 ) =
1

2
e−

τVij

4

∑

η=±

eηλij(c
†
i
cj+νc

†
j
ci), (9)

where ν = −1 if i and j belong to the same sublattices
and ν = +1 otherwise. In Eq. (9), η is a discrete local
HS field, and λij is determined by the equation

√
ν λij =

cosh−1 exp(τVij/2).
It is simple to verify that both H0 and the decoupled

interaction terms in the exponent of Eq. (9) can be cast
into the form,

H ′
bl =

∑

i,j∈A

c†i (Cij −B1,ij)cj +
∑

i,j∈B

c†i (Dij +B2,ij)cj

+
∑

i∈A,j∈B

(

c†iFijcj + h.c
)

, (10)

where C and D are real anti-symmetric matrices satisfy-
ing C = −CT and DT = −D. In SM-III. A, it is shown

that the matrix kernel of H ′
bl is Majorana reflection pos-

itive. Therefore, the interacting spinless model H0 +HI

is sign-problem-free, according to Theorem 1.

If both of B1 and B2 vanish, the above interacting
fermion Hamiltonian defined on the honeycomb lattice is
the model studied in Refs. [27–29]. It can be extended
to include the on-site staggered chemical potential term,
and remains sign-problem free [29, 40]. This is equivalent
to only keeping the diagonal terms of B1,2. Generally
speaking, in the presence of B1,2, Eq. (7) and Eq. (8)
do not possess the particle-hole symmetry. For example,
consider the case with B1,ij = µδij if i ∈ A and j ∈ A,
and B2,ij = 0, which is equivalent to applying a uniform
chemical potential µ/2 and a staggered on-site potential
(−)iµ/2 to the system. In the weak coupling limit, the
single-particle spectrum splits into two bands and the
band gap is approximately equal to µ/2, which means
that the chemical potential is located right at the bottom
of the upper band. At zero temperature, the fermion
density remains at half-filling. However, with increasing
temperature, the fermion density begins to deviate from
half-filling and the upper band is populated by fermions
within an energy window of T starting from the bottom
of that band. This implies that a spinless fermion model
with repulsive interactions can be simulated without the
sign problem away from half filling.

Now let us consider a second example, a spin-1/2
fermion model with Coulomb repulsion, spin-orbit cou-
pling and spin-flip terms, again defined on a bipartite
lattice. This is a generalized Kane-Mele-Hubbard model.
The Hamiltonian H = H0 +HI is defined by

H0 = −t
∑

〈ij〉σ

c†iσcjσ + iλ
∑

〈〈ij〉〉σ

σc†iσcjσ

+
∑

ij

(−)jhijc
†
i↑cj↓ + h.c., (11)

HI = U
∑

i

(ni↑ −
1

2
)(ni↓ −

1

2
), (12)

where ciσ (σ =↑, ↓) is the annihilation operator of
fermion with spin σ. hij is a real symmetric positive
(or, negative) semi-definite matrix. If we only keep the
diagonal terms of hij , they reduce to an in-plane stag-
gered magnetic field distribution. In the limit λ = 0 and
hij = 0, this Hamiltonian becomes the half-filled Hub-
bard model. For finite λ and hij , it breaks the SU(2)
invariance. In the absence of hij , the z-component of
total spin Sz remains conserved. In this case, Eq. (12)
is known to be sign-problem-free [18, 19]. However, in
the presence of hij , both the Sz conservation and the TR
symmetry are broken. The previous proof for the absence
of the sign problem is no longer valid [18, 19].

To show the above model is sign-problem free, let us
first consider the following bilinear Hamiltonian of spin-
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1/2 fermions,

H ′′
bl =

∑

ij

(

c†i↑Mijcj↑ + c†i↓M
∗
ijcj↓

)

−
∑

ij

hij

(

c†i↑c
†
j↓ + cj↓ci↑

)

, (13)

where Mij is an arbitrary N × N complex matrix. It
can be shown that H ′′

bl is Majorana reflection positive. A
proof of this is given in SM-III.B.
The Coulomb interaction HI can be decomposed into

a bilinear form by the following HS transformation,

e−τU(ni↑−
1

2
)(ni↓−

1

2
) =

1

2
e

1

4
τU

∑

η=±

eiλ
′η(ni↑+ni↓−1), (14)

where λ′ = cos−1 exp(−τU/2). By taking a particle-
hole transformation for the down-spin fermion operators
c†j↓ → (−)jcj↓ and keeping the up-spin fermion operators
unchanged, the bilinear exponent on the right hand side
of Eq. (14) becomes iλ′η(ni↑ − ni↓). Under the same
transformation, the t- and λ-terms in H0 defined by Eq.
(11) remain unchanged, but the h-term becomes the sec-
ond term of Eq. (13). Thus H0 is also Majorana reflec-
tion positive, and the Kane-Mele-Hubbard model defined
in Eq. (12) is free of the QMC sign problem according
to Theorem 1.
The absence of the sign problem of the Hamiltonian

defined by Eqs (11) and (12) is actually beyond the
framework of TR-invariant decompositions in the Dirac
fermion representation [20, 21]. It provides an opportu-
nity to study the effect of TR-symmetry breaking in two-
dimensional interacting topological insulators through
QMC simulations [41, 42]. The h-terms, which flip elec-
tron spins, can arise from the scattering of magnetic im-
purities. The magnetic impurities on the edges of a two-
dimensional topological insulator can destabilize the heli-
cal edge states by opening gaps. The interplay among in-
teraction effects, band structure topology, and magnetic
impurities, is an interesting topic that deserves further
investigation.
Majorana Kramers positive decomposition: We next

present a second theorem for the absence of sign problem
based on the Kramers symmetry structure of Majorana
fermions.

Theorem 2 ρp is non-negative if there exist two trans-
formation operators, S and P , such that

STV S = V ∗, (15)

PV P−1 = V, (16)

where S is a real antisymmetric matrix satisfying S2 =
−I and ST = −S, P is a symmetric or antisymmet-
ric Hermitian matrix satisfying P 2 = I, and P anti-
commutes with S, i.e., PS = −SP .

A proof of this theorem is given in SM-IV. The HS
decomposition satisfying Eqs. (15) and (16) is termed as
Majorana Kramers positive decomposition. It is a gen-
eralization of the Kramers TR-invariant decomposition
used in the determinant QMC of Dirac fermions in Refs.
[20, 21]. Here S, combined with complex conjugation C,
defines an anti-unitary Kramers transformation operator
T = SC satisfying T 2 = −1. A kernel V that satisfies
Eqs. (15) and (16) is also invariant under the anti-linear
transformation T ′ = PSC. If P is antisymmetric, then
T ′ is also a Kramers operator, satisfying (T ′)2 = −1, and
V is not Majorana reflection symmetric. On the other
hand, if P is symmetric, then (T ′)2 = 1. In this case, V
is both Majorana reflection and Kramers symmetric.

Eq. (15) ensures that the Majorana coefficient matrix
V is symmetric under the TR transformation. But the
symmetry alone does not assure ρp to be non-negative.
This is because the eigenvalues of

∏

k exp(−τVk) always
appear in pairs: If Λα is an eigenvalue, so is Λ−1

α . More-
over, from Eq. (15), it can be shown that Λ∗

α and
(Λ∗

α)
−1 are also eigenvalues. If Λα is modulus 1, then

Λ∗
α = Λ−1

α . In this case, these four eigenvalues reduce
to two if Λα is not doubly degenerate. According to the
expression of ρp in terms of Λα’s in SM-I, ρp may not
be positive-definite. The condition defined by Eq. (16)
adds an extra constraint to the Majorana coefficient ma-
trix V . It enforces the double degeneracy of the eigenval-
ues of

∏

k exp(−τVk) when they are modulus one. This
Kramers degeneracy assures ρp ≥ 0.

Theorem 2 is valid independent of the specific repre-
sentations of S and P . This implies that there is signifi-
cant flexibility in choosing the HS decomposition scheme.
Below we consider some simple realizations of S and P
operators. Assuming the system contains N = 2L sites,
we label the lattice sites by two indices (a, i) with a = 1, 2
(a can be also regarded as the index for the orbital de-
grees of freedom) and i = 1, ..., L, and the corresponding

Majorana fermion operators by γ
(µ)
a,i with µ = 1, 2 the in-

dex of the two Majorana fermions at each site. Operator
S can then be taken as S = iσ2 ⊗ τ0 ⊗ I, where I is the
identity matrix in the sector of i, and σα and τα denote
the identity (α = 0) and Pauli (α = 1, 2, 3) matrices in
the sectors of µ and a, respectively. The role of S is to

map γ
(1)
a,i to γ

(2)
a,i and γ

(2)
a,i to −γ

(1)
a,i .

P can be either anti-symmetric or symmetric. An anti-
symmetric P can be defined as σ1,3 ⊗ τ2 ⊗ I. S and P
thus defined can be applied to the interacting fermion
model investigated in Ref. [20, 21]. For a symmetric P ,
there are more choices, including any of the following,
σ1 ⊗ τα ⊗ I and σ3 ⊗ τα ⊗ I (α = 0, 1, 3). For each of
these, there exists a corresponding class of V ’s satisfying
Eqs. (15) and (16). For example for P = σ1 ⊗ τ0 ⊗ I, V
can be generally expressed as

V =
∑

α

(σ0 ⊗ τα ⊗Aα + iσ1 ⊗ τα ⊗Bα) , (17)
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where Aα and Bα with α = 0, 1, and 3 are real anti-
symmetric matrices, and A2 and B2 are imaginary sym-
metric matrices. The interacting fermion models that can
be decomposed into the form of Eq. (17) would represent
a new class of models without the QMC sign-problem.
An example of sign-problem free Hamiltonian that satis-
fies Eq. (17) is given in SM. V.
Summary: We have shown that interacting fermion

models are free of the sign problem in determinantal
QMC simulations if the bilinear Hamiltonians obtained
with the HS-decomposition possess the Majorana reflec-
tion positivity or the Majorana Kramers positivity. The
two theorems we have proven cover all the sign-problem-
free interacting lattice models that are previously known.
It also allows us to identify a number of new interacting
fermion models without the QMC sign problem.
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