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In recent experiments with ion traps, long-range interactions were associated with the exceptionally fast

propagation of perturbation, while in some theoretical works they have also been related with the suppression of

propagation. Here, we show that such apparently contradictory behavior is caused by a general property of long-

range interacting systems, which we name Cooperative Shielding. It refers to shielded subspaces that emerge as

the system size increases and inside of which the evolution is unaffected by long-range interactions for a long

time. As a result, the dynamics strongly depends on the initial state: if it belongs to a shielded subspace, the

spreading of perturbation satisfies the Lieb-Robinson bound and may even be suppressed, while for initial states

with components in various subspaces, the propagation may be quasi-instantaneous. We establish an analogy

between the shielding effect and the onset of quantum Zeno subspaces. The derived effective Zeno Hamiltonian

successfully describes the short-ranged dynamics inside the subspaces up to a time scale that increases with

system size. Cooperative Shielding can be tested in current experiments with trapped ions.

PACS numbers: 03.65.Xp; 75.10.Pq; 37.10.Ty; 67.85.-d

Introduction.– A better understanding of the nonequilib-

rium dynamics of many-body quantum systems is central to a

wide range of fields, from atomic, molecular, and condensed

matter physics to quantum information and cosmology. New

insights into the subject have been obtained thanks to the re-

markable level of controllability and isolation of experiments

with optical lattices [1–7] and trapped ions [8, 9]. Recently

there has been a surge of interest in the dynamics of sys-

tems with long-range interactions, triggered by experiments

with ion traps [8, 9], where the range of interactions in one-

dimensional (1D) spin models can be tuned with great accu-

racy. Other realistic systems that contain long-range interac-

tion include cold atomic clouds [10], natural light-harvesting

complexes [11–13], helium Rydberg atoms [14], and cold Ry-

dberg gases [15]. Long-range interacting systems display fea-

tures that are not often observed in other systems, such as

broken ergodicity [16–19] and long-lasting out-of-equilibrium

regimes [20].

According to the usual definition [21], in d dimension, an

interaction decaying as 1/rα (where r is the distance be-

tween two bodies), is short range when α > d and it is long-

range when α ≤ d. A major topic of investigation has been

whether the propagation of excitations in systems with long-

range interaction remains or not confined to an effective light

cone [22–30], as defined by the Lieb-Robinson bound [31]

and its generalizations ([30] and references therein). In the

aforementioned experiments with trapped ions, it was ob-

served that for short-range interaction, the propagation of per-

turbation is characterized by a constant maximal velocity,

being bounded to an effective light cone. As α decreases,

the propagation velocity increases and eventually diverges.

For long-range interaction, α ≤ 1, the light-cone picture is

no longer valid and the dynamics becomes nonlocal. How-

ever, examples of constraint dynamics in long-range interact-

ing systems have also been reported, including logarithmic

growth of entanglement [23], light-cone features [30], self-

trapping [32], and slow decays at critical points [33].

Here, we show that these contradictory results are due to

a general effect present in long-range interacting systems,

which we name Cooperative Shielding. It corresponds to the

onset of approximate superselection rules that cause a strong

dependence of the dynamics on the initial state. Inside a su-

perselection subspace, long-range interactions do not affect

the system evolution (shielding) up to a time scale that grows

with system size (cooperativity). The dynamics can then be

described by an effective short-ranged Hamiltonian that either

leads to a propagation within the Lieb-Robinson light cone or

to localization. In contrast, for an initial state with compo-

nents over several subspaces, the propagation of excitations is

affected by long-range interactions and can be unbounded.

To explain how shielding can arise in a very trivial case,

let us consider the total Hamiltonian H = H0 + V , de-

scribing a many-body quantum system, where H0 has one-

body terms and possible short-range interactions, and V cor-

responds to some additional interactions. If [H0, V ] = 0 and

V is highly degenerate in one of its eigensubspaces V , so

that V |Vk〉 = v|Vk〉 ∀|vk〉 ∈ V , the evolution of any initial

state |ψ0〉 belonging to such eigensubspace is simply given

by: |ψ(t)〉 = e−ivt/~e−iH0t/~|ψ0〉. Since the only effect

of V is to induce a global phase, the dynamics is shielded

from V and determined only by H0. In contrast, if the initial

state has large components in more than one eigensubspace of

V , the dynamics will not be shielded from V . The question

that we now pose is whether shielding is still possible when

[H0, V ] 6= 0 and V is no longer degenerate. We show that the

answer is positive when V involves only long-range interac-

tions. The dynamics can remain shielded, but now for a finite

time that increases with system size.
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One can also draw a parallel between the picture above and

the quantum Zeno effect (QZE). In the QZE, the dynamics

of the system remains confined to subspaces tailored by the

interaction with a measuring apparatus [34–38]. The stronger

the interaction is, the better defined the subspaces become.

Here, instead, the interaction strength is kept fixed, but due to

its long-range-nature, invariant subspaces are generated. The

dynamics, restricted to the invariant subspaces, is described

by a short-ranged Zeno Hamiltonian up to a time scale that

diverges with system size.

The Model.– We consider a 1D spin-1/2model with L sites

and open boundary conditions described by the Hamiltonian,

H = H0 + V, (1)

H0 =

L
∑

n=1

(B + hn)σ
z
n +

L−1
∑

n=1

Jzσ
z
nσ

z
n+1,

V =
∑

n<m

J

|n−m|ασ
x
nσ

x
m.

Above, ~ = 1 and σx,y,z
n are the Pauli matrices on site n. The

transverse field has a constant componentB and a random part

given by hn, where hn ∈ [−W/2,W/2] are random numbers

from a uniform distribution. The nearest-neighbor (NN) in-

teraction in the z-direction, of strength Jz ≥ 0, may or not be

present. J is the strength of the interaction in the x-direction

with α determining the range of the coupling. Unless spec-

ified otherwise, J = 1. The Hamiltonian with W = 0 and

Jz = 0 describes the systems studied with ion traps [8, 9]. In

agreement with those experiments, where a limited range of

system sizes is explored, V is not rescaled by L.

When α = 0, H can be written in terms of the total x-

magnetization,Mx =
∑L

n=1
σx
n/2, as

H =
L
∑

n=1

(B+ hn)σ
z
n +

L−1
∑

n=1

Jzσ
z
nσ

z
n+1 +2JM2

x −
JL

2
. (2)

The spectrum of V is divided into energy bands, each one

associated with a value of the collective quantity M2
x . Each

band, with energyEb = 2J(L/2−b)2−JL/2, has states with

b and L− b excitations, where b = 0, 1, . . . L/2. For instance,

b = 1 corresponds to states with one spin pointing up in the

x-direction in a background of down-spins or vice-versa. An

energy band contains 2
(

L
b

)

degenerate states if b < L/2 and
(

L
b

)

states when b = L/2. In contrast, for 0 < α < 1, the

states in each band V are not all degenerate anymore.

Light Cones.– In Refs. [8, 9], the acceleration of the spread-

ing of excitations and eventual surpassing of the Lieb-Robison

bound achieved by decreasing α was verified for initial states

corresponding to eigenstates ofH0, where each site had a spin

either pointing up or down in the z-direction. These initial

states have components in all subspaces of V .

Motivated by the special role of the x-direction in Eq. (2)

and to show the main features of Cooperative Shielding, here

we change the focus of attention to initial states with spins

aligned along the x-axis. They are the eigenstates of V and

are denoted by |Vk〉. In Fig. 1, we show the evolution of the

spin polarization, 〈σx
n(t)〉, for an initial state where all spins

point up in x, except for the spin in the middle of the chain,

which points down, so Mx = L/2− 1 and b = 1.

FIG. 1: (Color online) Density plots for the evolution of 〈σx
n(t)〉;

L = 13; B = 1/2; W = 0. Initial state: 〈σx
7 (0)〉 = −1 and

〈σx
n6=7(0)〉 = +1. A light cone typical of short-range interaction is

seen in (a), as expected, but also in (d), (e), and (f) where the evo-

lution is shielded from the present long-range interaction. Freezing

occurs for very long times in (b); it also happens in (c) where the

bands of V are not degenerate.

In Fig. 1 (a), where the interaction is short range (α = 3),

H0 effectively couples states belonging to different subspaces

of V . The effects of both H0 and V lead to the evident light

cone. This is no longer the case for long-range interaction

(α < 1), as exemplified in Figs. 1 (b) and (c) for α = 0 and

0.5. Their dynamics is frozen for a long time, which increases

with the range of the interaction [compare the time scales in

(b) and (c)] and with the system size (see discussion below).

The long-time localization of spin excitations in Figs. 1 (b)

and (c) is caused by both combined factors: the separated en-

ergy bands of V and the absence of direct coupling within the

band (H0 is not effective and Jz = 0). Notice that the energy

bands for case (c) are no longer degenerate, yet localization

persists for a long time.

Since the initial state is not an eigenstate of the total Hamil-

tonian, the spin excitation does eventually spread and the spins

reverse their signs (see Figs. 1 (b,c) and discussion in [41]).

This magnetic reversal can be explained in terms of macro-

scopic quantum tunneling [17].

While for α < 1 in the presence of an external field the

dynamics is frozen, the addition of NN interaction (Jz 6= 0)

restores the propagation of perturbations [Figs. 1 (d), (e), (f)].

Despite the existence of long-range interactions, the evolu-

tion can be described by an effective short-ranged Hamilto-

nian, as we show below. This is the hallmark of the Cooper-

ative Shielding effect discussed in this work, the suppression

of propagation [Figs. 1 (b), (c)] being only a special case of it.

In Figs. 1 (d), (e), (f), a light cone typical of short-range

interactions emerges: the dynamics is independent of system

size and of the long-range coupling J . In Fig. 1 (f), J is twice
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as large as in Figs. 1 (d,e), but the results in the three panels

are very similar, apart from border effects. The propagation of

excitations depends only on Jz up to long times. This shielded

evolution occurs for any α < 1 (see more figures in [41]). In

the case of 0 < α < 1, as in Figs. 1 (e) and (f), the bands of

V are no longer degenerate, so the various eigenstates of V
that are excited within the band have different eigenenergies.

One could then expect V to affect the evolution, yet the veloc-

ity of propagation remains independent of V for long times.

This shows that the cause for shielding is not only the suppres-

sion of the transitions between different bands of V , but also

the narrow distribution of the energies of V inside the band.

The motion remains constrained to subspaces that are quasi-

degenerate w.r.t. to V . The emergence of quasi-constants of

motion is recurrent in long-range interacting systems [20].

Invariant Subspaces and Zeno effect.– Stimulated by the

results of Fig. 1, we now analyze in more details the effects

of infinite-range interaction (α = 0) and their dependence on

system size. For a general treatment, we assume a random

transverse field, so B = 0 and hn 6= 0. We take as initial state

|Ψ(0)〉 a random superposition of all states |V b
k 〉 that belong

to the same fixed band b chosen for the analysis. We verified

that the results for single states |V b
k 〉 picked at random from

the same energy band are equivalent.

In Figs. 2 (a) and (b), we compute the probability, Pb(t),
for the initial state to remain in its original energy band b,

Pb(t) =
∑

k

|〈V b
k |e−iHt|Ψ(0)〉|2, (3)

where the sum includes all the states of the selected energy

band. The results are shown for 〈Pb(t)〉, where 〈.〉 indicates

average over random realizations and initial states. We show

the case of b = 1, but similar results hold for other bands.

It is evident that the probability to remain in the initial band

increases with system size. This happens in the presence of a

random transverse field [Fig. 2 (a)] and also when NN inter-

actions are added [Fig. 2 (b)].

In Figs. 2 (c) and (d), we plot the asymptotic values of the

leakage probability,Pleak = 1−limt→∞〈Pb(t)〉, as a function

of the random field strength for Jz = 0 [Fig. 2 (c)] and vs the

NN coupling strength forW = 0 [Fig. 2 (d)]. Pleak represents

the probability for |Ψ(0)〉 to leak outside its original band. It

decreases with L, showing that as the system size increases,

the evolution of |Ψ(0)〉 remains more and more confined to a

subspace of V for a longer time. Note that the distance be-

tween the bands nearby the initial one increases with L, but

so does the number of states which are connected by H0. The

suppression of leakage takes into account this non-trivial in-

terplay. A perturbative argument leads to Pleak ∝ (W/J)2/L
for W 6= 0 and Jz = 0, while Pleak ∝ (Jz/J)

2/L for NN in-

teraction only [41]. Such scaling relations are consistent with

our numerical data in Figs. 2 (c) and (d).

The invariant subspaces generated by long-range interac-

tion can be related to the QZE [34–38]. This term refers to the

familiar freezing of the dynamics due to frequent measure-

ments, but also to the onset of invariant Zeno subspaces that

occurs in unitary dynamics due to strong interactions [36, 38]

and which has been studied experimentally [42]. The latter is
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FIG. 2: (Color online) Probability for the initial state to remain in

(a,b) or leave (c,d) its original energy band. In (a,b): 〈Pb(t)〉 for

the initial random superposition of states |V b
k 〉 from band b = 1 for

L = 10, 12, 14 from bottom to top; in (a): Jz = 0,W = 2 and in

(b): Jz = 1,W = 0. In (c,d): Pleak vs W for Jz = 0 (c), and vs Jz

for W = 0 (d). Symbols represent numerical results and full lines,

analytical estimates [41] with an overall fitting multiplicative factor.

In all panels: averages over 50 realizations, B = 0, α = 0.

closer to our case and can be explained as follows. Consider

the total Hamiltonian H = Hs + gHmeas, which one may

interpret as a quantum system described by Hs that is contin-

uously observed by an “apparatus” characterized by gHmeas.

In the limit of strong coupling, g → ∞, a superselection rule

is induced that splits the Hilbert space into the eigensubspaces

of Hmeas. Each one of these invariant quantum Zeno sub-

spaces is specified by an eigenvalue vk and is formed by the

corresponding set of degenerate eigenstates of Hmeas. The

dynamics becomes confined to these subspaces and dictated

by the Zeno HamiltonianHZ =
∑

k ΠkHsΠk+vkΠk , where

Πk are the projectors onto the eigensubspaces of Hmeas cor-

responding to the eigenvalues vk.

For the system investigated here, we associate Hs with H0

and gHmeas with V . The subspaces of V , with fixed num-

bers b of excitations, become invariant subspaces of the to-

tal Hamiltonian not only when J → ∞ with B,W, Jz fixed,

which is the scenario of the QZE described above, but also in

the large system size limit, L → ∞, which is the main focus

of this work.

When Jz = 0, the Zeno Hamiltonian coincides with

V , because the transverse field does not couple directly

states |V b
k 〉 that belong to the same eigensubspaces of V , so

∑

k ΠkH0Πk = 0. This explains why the dynamics in Fig. 1

(b) is frozen for very long times. On the other hand, in the case

where B,W = 0 and Jz 6= 0, we can rewrite H0 in terms of

the σ±x

n operators that flip the spins in the x-direction. The

projection of the NN part of the Hamiltonian on the eigen-

subspaces of V leaves only the term σ+x

n σ−x

n+1 + σ−x

n σ+x

n+1,

which leads to a Zeno Hamiltonian with an effective NN in-

teraction that conserves the number of excitations inside each

band b. This explains why in Fig. 1 (d) a light cone typical of

short-range interactions appears.

Fidelity Decay.– To substantiate that the dynamics in the
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subspaces with fixed b becomes indeed controlled by the Zeno

Hamiltonian as L increases, we analyze the fidelity between

an initial state evolved under the total Hamiltonian H and the

same state evolved under HZ ,

F (t) = |〈Ψ(0)|eiHZ te−iHt|Ψ(0)〉|2. (4)

It is clear that if H → HZ then F (t) → 1. The results are

shown in Fig. 3. Equivalently to Fig. 2, we fix B = 0 and

deal with averages over disorder and initial states, which gives

〈F (t)〉. |Ψ(0)〉 is again a random superposition of all states

|V b
k 〉 belonging to the same band b.
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FIG. 3: (Color online) Fidelity decay and time for it to reach the

value 1/2; initial states are random superpositions of |V b
k 〉. Upper

panels: F (t) for b = 3 for Jz = 0,W = 2 (a) and for W = 0, Jz =
1 (d). From bottom to top: L = 10, 12, 14. Numerical results: full

lines. Gaussian decay: dashed lines. Lower panels have Jz = 0 and

give T1/2 vs W for L = 12 (b), and vs L for W = 2 (c), for |Ψ(0)〉
from different bands. Numerical data: symbols. Analytical estimate

T1/2 = c1/δE with c1 a fitting parameter: dashed lines. All panels:

averages over 50 realizations, α = 0, B = 0.

In Figs. 3 (a) and (d) the fidelity is plotted vs time for dif-

ferent system sizes for the band with b = 3. In panel (a), H0

contains only the random fields, while in (d),H0 contains only

NN interaction. In both cases the fidelity decay slows down

as the system size increases, confirming that HZ determines

the dynamics for large L.

For the Jz = 0 case of Fig. 3 (a), since the projection of

H0 on the b subspace is zero, the fidelity coincides with the

survival probability, F (t) = |〈Ψ(0)|Ψ(t)〉|2, which, counter-

intuitively, decays slower as the system size increases. This

shows that the dynamics localizes as L→ ∞. F (t) decays as

a Gaussian [43–47] – see dashed lines in Fig. 3 (a).

In Figs. 3 (b) and (c) we study how the time T1/2 that it

takes for the survival probability to reach the value 1/2 de-

pends on the disorder strength (b) and on system size (c). Fig-

ure 3 (b) provides information associated with the usual QZE,

where the quantum Zeno subspaces are induced by decreasing

the strength of H0. One sees that the dynamics slows down

with the reduction of disorder as 〈T1/2〉 ∝ W−2. In Fig 3

(c), 〈T1/2〉 grows with L, corroborating our claims that the fi-

delity increases and the excitations become more localized as

the system size increases.

The estimation of the dependence of T1/2 on the param-

eters of H goes as follows. Since the eigenstates of V in

each invariant subspace are degenerate, the perturbation H0

mixes them all. In this case, the energy uncertainty ω of the

initial state can be approximated by the energy spread δE of

each band induced by the perturbation. The fidelity decay can

then be estimated as T1/2 ≃ 1/δE, where δE is computed

from perturbation theory [41]. For large system sizes one

has T1/2 ∝ J
√
L/W 2. The analytical estimates for T1/2 are

shown with dashed curves in Figs. 3 (b) and (c). The agree-

ment is excellent.

We note that T1/2 gives the time scale over which the

shielding effect persists. In finite systems, shielding is effec-

tive for a finite time that can, however, be exceedingly long,

as shown in Fig. 3.

Conclusions.– We revealed a generic effect of long-range

interacting systems: Cooperative Shielding. It refers to invari-

ant subspaces that emerge as the system size increases. Inside

these subspaces, the dynamics occurs as if long-range inter-

action was absent, being dictated by effective short-ranged

Hamiltonians. A parallel was established between these

Hamiltonians and Zeno Hamiltonians.

The analysis and control of nonequilibrium dynamics can

never be detached from the initial state considered. For ex-

actly the same Hamiltonian with long-range interaction, an

initial state with components in the various subspaces induced

by that interaction leads to a nonlocal propagation of pertur-

bation, as demonstrated experimentally with ion traps [8, 9],

while an initial state belonging to a single subspace is unaf-

fected by the long-range interaction, as verified here. Cooper-

ative Shielding could also be tested by those experiments.
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