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Clean and interacting periodically-driven systems are believed to exhibit a single, trivial “infinite-
temperature” Floquet-ergodic phase. In contrast, here we show that their disordered Floquet many-
body localized counterparts can exhibit distinct ordered phases delineated by sharp transitions.
Some of these are analogs of equilibrium states with broken symmetries and topological order,
while others — genuinely new to the Floquet problem — are characterized by order and non-trivial
periodic dynamics. We illustrate these ideas in driven spin chains with Ising symmetry.

Introduction: Extending ideas from equilibrium statis-
tical mechanics to the non-equilibrium setting is a topic
of perennial interest. We consider a question in this vein:
Is there a sharp notion of a phase in driven, interacting
quantum systems? We find an affirmative answer for
Floquet systems1–3 whose Hamiltonians depend on time
t periodically, H(t + T ) = H(t). Unlike in equilibrium
statistical mechanics, disorder turns out to be an essen-
tial ingredient for stabilizing different phases; moreover,
the periodic time evolution allows for the existence (and
diagnosis) of phases without any counterparts in equilib-
rium statistical mechanics.

Naively, Floquet systems hold little promise of a com-
plex phase structure. In systems with periodic Hamil-
tonians, not even the basic concept of energy survives,
being replaced instead with a quasi-energy defined up to
arbitrary shifts of 2π/T . Indeed, interacting Floquet sys-
tems should absorb energy indefinitely from the driving
field, as suggested by standard linear response reason-
ing wherein any nonzero frequency exhibits dissipation.
This results in the system heating up to “infinite temper-
ature”, at which point all static and dynamic correlations
become trivial and independent of starting state — thus
exhibiting a maximally trivial form of ergodicity4–6.

To get anything else requires a mechanism for energy
localization wherein the absorption from the driving field
saturates, and the long-time state of the system is sensi-
tive to initial conditions. The current dominant belief is
that translationally invariant interacting systems cannot
generically exhibit such energy localization4–6, although
there are computations that suggest otherwise7–9. The
basic intuition is that spatially extended modes in trans-
lationally invariant systems interact with and transfer
energy between each other.

This can be different when disorder spatially local-
izes the modes, with individual modes exhibiting some-
thing like Rabi oscillations while interacting only weakly
with distant modes. While the actual situation is some-
what more involved, several pieces of work10–12 have
made a convincing case for the existence of Floquet en-
ergy localization exhibiting a set of properties closely re-
lated to those exhibited by time-independent many-body
localized13 (MBL) systems14.

In the following we show that such Floquet-MBL sys-

tems can exhibit multiple phases. Some of these are
driven cousins of MBL phases characterized by broken
symmetries and topological order. Remarkably, others
are genuinely new to the Floquet setting, characterized
by order and non-trivial periodic dynamics. Our analy-
sis identifies a key feature of the Floquet problem, the
existence of Floquet eigenstates, which permits us to ex-
tend the notion of eigenstate order15–19 to time depen-
dent Hamiltonians. Our work also builds on the discovery
of topologically non-trivial Floquet single particle sys-
tems and recent advances in their classification20–28. As
we will explain, non-trivial single particle drives can yet
lead to trivial many-body (MB) periodic dynamics even
without interactions. Thus, the full framework of disor-
der and interactions is required for the MB problem.

In the following sections, we briefly review the Floquet
formalism and describe the notion of eigenstate order be-
fore generalizing it to the Floquet setting. We then illus-
trate our ideas for driven Ising spin chains. We first show
that there are two Floquet phases, paramagnet (PM) and
spin glass (SG), that connect smoothly to phases in the
undriven systems. We then identify two new phases that
do not, which we term the Floquet 0π-PM and the Flo-
quet π-SG. Along the way we note that, reformulated as
fermion problems, these yield instances of Floquet topo-
logical order.
Floquet Formalism: We consider periodic, interacting
Hamiltonians which are local in space. The time depen-
dent Schrödinger equation

i
d|ψ(t)〉
dt

= H(t)|ψ(t)〉 (1)

has special solutions1–3:

|ψα(t)〉 = e−iεαt|φα(t)〉 (2)

defined by periodic states |φα(t)〉 = |φα(t+T )〉 and quasi-
energies εα defined modulo 2π/T .

These replace the eigenstates of the time independent
problem; in them observables have periodic expectation
values, and they form a complete basis. The “Floquet
Hamiltonian” HF is defined via the time evolution op-
erator over a full period, U(T ) = e−iHFT . The |φα(0)〉
are eigenstates of both U(T ) and HF , with eigenvalues
e−iεαT and εα respectively.
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The question of energy localization relates to the action
of U(nT ) = (U(T ))n as n → ∞. An equivalent formu-
lation of Floquet-MBL is that there exists an HF which
is local and exhibits the generic properties of any fully
MBL Hamiltonian, such as a full set of conserved local
operators29–33 (l-bits), area law eigenstates and failure of
the eigenstate thermalization hypothesis (ETH)34.
Eigenstate Order: Traditionally, phase transitions at
non-zero energy densities are considered in the framework
of quantum statistical mechanics, signaled by singulari-
ties in thermodynamic functions or observables computed
in the T > 0 Gibbs state. Work on MBL has led to the
realization that this viewpoint is too restrictive15–19—
instead the MB eigenstates and eigenvalues can directly
exhibit singular changes as a parameter is varied. Such
transitions have been termed eigenstate phase transi-
tions. This distinction is irrelevant for Hamiltonians
obeying ETH, but when ETH fails it becomes impor-
tant. The passage from ergodicity to localization is an
example of an eigenstate transition undetectable by stan-
dard ensembles34–36—it can take place at T = ∞ and
yet the individual MB eigenstates are sharply different in
their entanglement properties, with the eigenvalue distri-
butions exhibiting different statistics. Moreover, eigen-
state phase transitions can take place between two ETH
violating phases15 and they may even involve a singular
rearrangement of the eigenvalues alone.

We now generalize this to the Floquet-MBL regime,
leading us to find multiple ordered phases whose exis-
tence can be detected in the Floquet MB eigensystem.
In general, this will require examination of the full peri-
odic solutions |ψα(t)〉 for sharply different characteristics.
We will demonstrate our results in the simple interacting
setting of a one dimensional disordered spin chain with
Ising symmetry,

H =
∑
i

Jiσ
x
i σ

x
i+1 +

∑
i

hiσ
z
i + Jz

∑
i

σzi σ
z
i+1. (3)

Carrying out a Jordan-Wigner transformation on only
the first two terms gives a p-wave superconducting free-
fermion model, whereas the final term is a density-density
interaction in the fermion language. The paramagnetic
and symmetry-broken ferromagnetic phases of the Ising
model are related by a well-known duality.
Floquet Paramagnet and Spin Glass: We begin
with the two phases that do exist in undriven systems
and demonstrate the stability of these to being (not too
strongly) driven. Starting with the non-interacting limit,
Jz = 0, we choose the Ji and the hi to be log-normally
distributed with a tunable mean log(Ji) ≡ log J , fixed

log(hi) ≡ log h = 0 and two fixed and equal standard
deviations δ log(hi) = δlog(Ji) = 1. Work on random,
non-interacting Ising models culminating in Ref. 37 finds
a ground state phase diagram which is a paramagnet
for log J < log h and a Z2 breaking ferromagnet for
log J > log h, separated by an infinite disorder fixed point
at log J = log h. The work on eigenstate order has shown
that, with disorder and localization, both phases exist at
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FIG. 1. Disorder averaged level statistics 〈r〉 of HF for the
driven, disordered Ising model (4). 〈r〉 approaches the Poisson
limit of .386 with increasing L deep in the PM and SG phases,
showing that these remain well localized. There is a peak in
〈r〉 near the non-interacting critical point at log J = log h
indicating partial delocalization, although the value still re-
mains well below the COE value of .527. (inset): The SG
diagnostic χSG defined in (6) goes to 0 in the PM and ap-
proaches a non-zero value in the SG phase. All data is aver-
aged over 2000− 105 samples depending on L.

all energies with the symmetry-breaking phase exhibiting
SG order in individual eigenstates instead of ferromag-
netism. The eigenstates are also eigenstates of parity
P =

∏
σzi , and deep in the PM phase, they (roughly)

look like frozen spins along the z direction | ↑↓↓ · · · ↑〉
while deep in the SG phase they look like global superpo-
sition/cat states with spins in the x direction with frozen
domain walls |±〉 = 1√

2
(| →←→ · · · →〉 ± | ←→← · · · ←

〉).
With weak interactions, 0 < Jz � 1, the strongly lo-

calized PM and SG phases remain MB localized38,39. The
fate of the SG-PM transition is more sensitive to the in-
clusion of interactions. It was suggested that it would
remain localized15 and exhibit the same scaling as the
non-interacting fixed point38; we comment on the analo-
gous question in the Floquet setting below.

We consider a periodic binary drive—computationally
much simpler than a monochromatic modulation—
switching between two static Hs with log J differing by
1:

H(t) =
∑
i

fs(t) Jiσ
x
i σ

x
i+1 +

∑
i

hiσ
z
i + Jz

∑
i

σzi σ
z
i+1,

fs(t) =

{
1 if 0 ≤ t < T

4 or 3T
4 < t ≤ T

e if T
4 ≤ t ≤ 3T

4

.

(4)

We set Jz = 0.1 in the following. For −1 ≤ log J ≤ 0
the drive straddles the undriven phase transition, up to
small corrections to its location due to the interaction.

Drives consistent with Floquet localization require
both small interactions and not too small frequencies.
We arrange the latter by defining, for each set of (log J ,
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log h) parameters, an effective “single-particle band-
width”, W = max(σJ , σh), where σh and σJ are the
standard deviations of hi and Ji determined from the un-
derlying log-normal distributions. The period is then de-
fined by ω = 2π/T = 2W . This choice ensures a roughly
constant ratio of ω/W for different log J − log h values
and thus isolates the effect of tuning the means through
the phase diagram.

The lowest frequency in our drives is bigger than the es-
timated single particle bandwidth but much smaller than
the MB bandwidth, so that localization is not a foregone
conclusion. In Fig. 1 we characterize the quasi-energy
spectrum εn ∈ [0, 2π) using the level statistics of HF . We
define quasi-energy gaps by δn = εn+1− εn and the level-
statistics ratio r = min(δn, δn+1)/max(δn, δn+1). Away
from the critical region which—given the weak interac-
tions and large frequency of the drive—is close to the
undriven, non-interacting transition point log J = log h,
the disorder averaged 〈r〉 approaches the Poisson limit
of .386 with increasing system size L, signaling a lack of
level repulsion and hence MBL. In the interacting critical
region we find a peak in 〈r〉 which does not grow with
system size and is much less than the delocalized COE
value of .527; we return to this below.

With localization established, we turn to distinguish-
ing the phases. Consider a pair of Z2 invariant correlators
(with A = x or y)

CαAA(ij; t) = 〈φα(t)|σAi σAj |φα(t)〉 (5)

for i−j � 1 in any given Floquet eigenstate. We find that
for log J < log h both correlators vanish with increasing
system size L at all t, signaling a PM. For log J > log h,
both are generically non-zero, though of random sign
varying with eigenstate and location, signaling SG order.
For the SG, our parameters give |Cαxx(ij; t)| � |Cαyy(ij; t)|
at all t although the more general signature is that
|Cαxx(ij; t)| and |Cαyy(ij; t)| do not cross for 0 < t < T .
For our parameters, it suffices to compute

χSGα (t) =
1

L2

L∑
i,j=1

(〈φα(t)|σxi σxj |φα(t)〉)2 (6)

for t = 0. In Fig. 1 (inset) we plot the disorder aver-
aged χSGα (0); the trend with system-size indicates that
χSG(t) > 0 in the spin-glass and χSG(t)→ 0 in the para-
magnet.

Three comments are in order. First, recall that it
would be sufficient to establish the existence of the Flo-
quet PM—the SG can be obtained by duality40. Second,
in chains with uniform couplings, both spin and dual spin
order vanish in all but one of the Floquet eigenstates
(the notion of the “ground-state” is not well defined
in a Floquet system) even without interactions—this is
the Landau-Peierls prohibition against discrete symme-
try breaking in disguise. Localization is essential to avoid
this. Third, the |±〉 MB Floquet eigenstates in the local-
ized SG phase come in conjugate, almost degenerate pairs

with different parity but with similar domain wall con-
figurations. In the fermionic formulation of the problem,
the PM is topologically trivial while the SG is non-trivial.
The non-interacting SG phase has zero energy edge Ma-
jorana modes in open chains, and the two-fold degeneracy
of the many-body SG spectrum (in this language) stems
from the occupation/unoccupation of the bilocal Dirac
mode formed from the edge Majoranas. With interac-
tions, the edge mode remains coherent only in the MBL
setting18,19. Thus, the degenerate Floquet eigenstates
can be connected by either (i) spectrum-generating op-
erators localized near the edges which toggle the state
of the coherent edge mode (fermionic language) or (ii)
any spin operator that flips the parity of the eigenstates.
Concretely, the spectral function of σ+

i , the spin raising
operator on any site i, in the Floquet eigenbasis

A(ω) =
1

2L

∑
αβ

〈φα(0)|σ+
i |φβ(0)〉δ(ω − (εα − εβ)) (7)

is a delta function peaked at ω = 0 (this phase will hence
also be labeled the ‘0’ phase below). Finally, we note that
the SG displays long-range string order in all eigenstates
regardless of boundary conditions. Without disorder, the
string order vanishes even in the many body eigenstates
of free fermion chains—despite the non-trivial momen-
tum space topology present in their Hamiltonians.
Paramagnet-Spin Glass Phase transition: In the
non-interacting problem we have strong evidence that
the infinite disorder fixed point continues to control the
physics. We have examined HF and we find that all
its eigenstates are localized even at the transition, and
its structure differs from the canonical strong-disorder
renormalization group form37 by short ranged, irrele-
vant, terms. The ultimate fate of the critical region
in the interacting driven problem is an interesting open
question41, but we note for now that our data on 〈r〉
suggests a partially delocalized interacting critical point.
π Spin Glass and 0π Paramagnet: We now present
two new Ising phases which exist only in the driven
system—the π-SG and the 0π-PM. Existing work on the
band topology of translationally invariant Z2 symmetric
free-fermion chains22,42,43 has shown that the Floquet
eigenmodes for such chains with open boundary condi-
tions can exhibit edge Majorana modes with εα = π/T
in addition to the better known edge modes with εα = 0.
In the MBL setting in the ‘π’ phase, the MB Floquet
eigenstates are long-range ordered and come in |±〉 cat
pairs separated by quasienergy π/T . These can again be
connected by either spectrum generating operators lo-
calized near the two edges (fermion language) or by local
parity odd operators (spin language). Thus, the spectral
function A(ω) (7) now shows a delta function peak at
ω = π/T .

We now establish these phases for the binary periodic
drive

H(t) =

{
Hz if 0 ≤ t < T1
Hx if T1 ≤ t < T = T1 + T2

(8)
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FIG. 2. (a) Phase diagram for the binary Ising drive, Eq. (8) without interactions (Jz = 0) and disorder. (b) Level Statistics
〈r〉 of HF in the π phase with parameters defined in the text and disorder averaged over 2000-100,000 realizations for different
Ls. HF is localized for interaction strengths Jz . 0.1. (c) Disorder averaged spectral function A(ω) defined in Eq. (7). Solid
(dashed) lines are for the π-SG (0-SG) phase showing a delta function peak at ω = π/T (0) for small interaction strengths
which disappears as the interaction is increased. (d) Time dependence of the Cxx and Cyy correlators defined in Eq. (5) over
one period for an eigenstate in the π phase; L = 10, T1 = 1 and Jz = 0.04. The crossings are robust in the π phase.

Hz =
L∑
i=1

hiσ
z
i +

L−1∑
i=1

Jzσ
z
i σ

z
i+1,

Hx =

L−1∑
i=1

Jiσ
x
i σ

x
i+1 + Jzσ

z
i σ

z
i+1 .

Fig. 2(a) shows the uniform, non-interacting phase di-
agram with the four possible driven Ising phases. The
phases labeled ‘0’ and ‘ π’ have edge Majorana modes
at quasienergies 0 and π/T respectively. With disor-
der and localization, these phases display long-range SG
eigenstate order in the correlators (5) for both A = x, y.
Moreover, in the π-SG phase, the time dependence of the
Cxx and Cyy correlators over the period is non-trivially
correlated: their magnitudes must cross twice during a
period. Thus, in this phase, the axis of SG order ro-
tates by an angle π about the z-axis during the period
which can be intuitively understood by thinking semi-
classically about the drive (8) at the extremal bound-
aries of the phase diagram shown in Fig. 2(a). A referee
has noted that this sign reversal of the order parameter
and thus doubling of the period (also found previously
in44), provides a potential Floquet realization of a time
crystal45,46. As before, without localization, only one of
the Floquet eigenstates(analogous to the ground state)
will display long-range order in the 0, π phases. The other
two phases, labeled PM and 0π, have no long-range order
and are respectively dual to the 0 and π phases.

We now turn to numerically identifying the local-
ized π phase with disorder and interactions. We pick
T = 1, T2 = π/2 and hiT1 uniformly from the interval
(1.512, 1.551) and JiT2 from (0.393, 1.492), so that all
pairs of values (hiT1, JjT2) lie in the π/T Majorana re-
gion of the free uniform chains. We have confirmed that
the free fermion disordered drive exhibits π/T Majoranas
for open chains while all other modes are localized in the
bulk. In Fig 2b we examine stability to interactions via
〈r〉 and clearly observe a transition around Jz ≈ 0.1, with
the small Jz regime being the MBL phase we seek.

Fig. 2c shows the appearance of the π/T peak in the
disorder averaged spectral function (7) for system size
L = 10 as the delocalization transition is crossed by de-
creasing the interaction strength. In contrast, the dashed
lines show the spectral function for a similar drive in the
0-SG phase, clearly showing a peak at ω = 0. Finally, Fig
2d displays the anticipated time dependence of the SG
order in the Cxx and Cyy correlators in a single eigenstate
of the interacting system with Jz = 0.04 and L = 10. The
crossings in the correlator within the period are robust
in the π-SG phase and topologically distinct from the
correlators in the 0-SG phase where there are no cross-
ings. We emphasize that this is a true bulk diagnostic
of the phase which, unlike the presence of an edge mode,
is insensitive to boundary conditions. We also note that
the non-trivial spin dynamics captured by it cannot be
obtained without localization.

Finally we turn to the 0π-PM which is dual to the π-
SG. This is an SPT phase with no bulk long-range order,
but with coherent edge states. In the fermionic language,
there are now two Majorana modes at each edge, one at
quasienergy 0 and the other at π/T and thus MB spec-
trum is paired into conjugate sets of four MB states—two
degenerate pairs of states separated by quasienergy π/T .
The eigenstates in this phase do not look like global su-
perposition states and the spectral function of bulk spin
operators shows no structure. On the other hand, spec-
tral functions of edge operators which toggle the state of
the edge modes show a peak at both 0 and π/T .
Summary and open questions: We have shown that
MBL Floquet systems exhibit sharply defined phases
bounded by parameter surfaces across which properties of
their Floquet eigensystems change in a singular fashion.
These phases include the trivial Floquet-ergodic phase
and multiple non-trivial non-ergodic phases exhibiting
various forms of ordering and dynamics, some of which
are entirely new to Floquet systems. The net result is
something quite striking given the contentious history of
non-equilibrium statistical mechanics. Indeed, it is quite
likely that Floquet systems constitute the maximal class
for which such a definition of phase structure is possible;
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with generic time dependences it would not be surpris-
ing if heating to infinite temperatures is the inevitable
result. Going forward we anticipate a more systematic
search for Floquet phases and a better understanding of
their phase diagrams. In this context we note two stud-
ies that include disorder, but not interactions, in Floquet
systems47,48. It should also be possible to observe the
new localized phases by the methods of Ref. 49.
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