
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Spin Ferroquadrupolar Order in the Nematic Phase of FeSe
Zhentao Wang, Wen-Jun Hu, and Andriy H. Nevidomskyy
Phys. Rev. Lett. 116, 247203 — Published 17 June 2016

DOI: 10.1103/PhysRevLett.116.247203

http://dx.doi.org/10.1103/PhysRevLett.116.247203


Spin Ferroquadrupolar Order in the Nematic Phase of FeSe

Zhentao Wang, Wen-Jun Hu, and Andriy H. Nevidomskyy
Department of Physics and Astronomy, Rice University, Houston, TX 77005, USA

We provide evidence that spin ferroquadrupolar (FQ) order is the likely ground state in the non-magnetic
nematic phase of stoichiometric FeSe. By studying the variational mean-field phase diagram of a bilinear-
biquadratic Heisenberg model up to 2nd nearest neighbor, we find FQ phase in close proximity to the columnar
antiferromagnet (CAFM) commonly realized in iron-based superconductors. The stability of FQ phase is further
verified by density matrix renormalization group (DMRG). The dynamical spin structure factor in the FQ state is
calculated with flavor-wave theory, which yields qualitatively consistent result with inelastic neutron scattering
experiments (INS) on FeSe at both low and high energies. We verify that FQ can coexist with C4 breaking
environments in the mean-field calculation, and further discuss the possibility that quantum fluctuations in FQ
act as a source of nematicity.

PACS numbers: 75.10.-b 74.70.Xa, 74.25.-q

Superconductivity in the iron-based superconductors [1, 2]
is widely recognized to have spin fluctuations at its ori-
gin [3, 4], as it develops after the suppression of colum-
nar antiferromagnetism (CAFM) by doping or applied pres-
sure on the parent compounds [5–8]. The CAFM phase is
characterized by the magnetic Bragg peaks at wave-vectors
Q1,2 = (π, 0)/(0, π) in the one-iron Brillouin zone, seen ubiq-
uitously in different families of the iron pnictides and chalco-
genides [5, 9, 10]. The discovery of superconductivity in sto-
ichiometric FeSe thus came as a surprise, because the long-
range magnetic order is conspicuously absent in this ma-
terial [11–16]. Another important feature, universally ob-
served across different families of iron-based superconduc-
tors, is the appearance of an electronic nematic phase [17–20]
which spontaneously breaks the lattice C4 rotational symme-
try. Usually, nematicity appears in close proximity to mag-
netism above the Néel temperature, however in FeSe, the ne-
matic phase appears without any accompanying magnetism
and coexists with superconductivity [12–15]. It is thus im-
portant to understand the origin of this non-magnetic nematic
phase, in particular to gain insight into its effect on supercon-
ductivity.

It turns out that magnetic order can be induced by applying
hydrostatic pressure to FeSe [12–14]. It has also been sug-
gested based on ab initio calculations that the non-magnetic
phase in FeSe lies in close proximity to the CAFM phase
[21–23]. Further evidence of proximity to long-range mag-
netic order comes from inelastic neutron scattering (INS) ex-
periments, which found large spectral weight at wavevectors
Q1,2 [24–27]. Two natural questions arise: In the theoreti-
cal phase diagram, is there a non-magnetic phase that neigh-
bors on the CAFM? And furthermore, how does such a non-
magnetic phase give rise to nematicity?

In an attempt to answer these questions, several theoretical
scenarios have been proposed for non-magnetic ground states
that may appear as a result of frustration: a nematic quantum
paramagnet [28], a spin quadrupolar state with wave-vectors
Q1,2 [29], or a staggered dimer state [30]. In all three cases, the
ground state wavefunction was designed to explicitly break
the C4 symmetry, thus resulting in nematicity. Alternatively,

instead of being the ground state property, nematicity can also
be induced as a result of anisotropic thermal [31, 32] or pos-
sibly quantum fluctuations.

In this Letter, we investigate the frustrated bilinear-
biquadratic Heisenberg model used by many authors to model
iron pnictides and chalcogenides [28, 29, 33–35], and show
that the most likely non-magnetic state that agrees qualita-
tively with the INS data on FeSe is the spin ferroquadrupo-
lar (FQ) phase. By using variational mean-field, flavor-
wave expansion, and the density matrix renormalization group
(DMRG) calculations, we firmly establish that the FQ phase
is situated in close proximity to the CAFM state in the phase
diagram and is readily accessible in the realistic parameter
regime of the model. The experimentally observed onset of
magnetism in FeSe under applied pressure [12–14] is thus
interpreted as the transition between the proposed FQ phase
and CAFM. The calculated dynamical spin structure factors
agree qualitatively with the INS data [24–27], exhibiting pro-
nounced maxima of the scattering intensity at the gapped Q1,2
points. We note that this is in contrast with the antiferro-
quadrupolar (AFQ) scenario, which has negligible spectral
weight at these wavevectors [29]. Furthermore, we demon-
strate that FQ order is robust with respect to C4 symme-
try breaking environment, and can thus support nematicity,
regardless of its microscopic origin. Additionally, we find
that the density-density interactions between Q1,2 modes are
highly repulsive within the FQ phase and diverge upon ap-
proaching the FQ/CAFM phase boundary, providing a sce-
nario in which quantum fluctuations in FQ are the origin of
nematicity.

We use a bilinear-biquadratic Heisenberg model [28, 29,
33–35] to investigate the ground state properties and spin dy-
namics:

H =
1
2

∑
i, j

Ji jSi · S j +
1
2

∑
i, j

Ki j(Si · S j)2, (1)

where Si is the quantum spin-1 operator on site i. In the
present study, the interactions are limited to the 1st and 2nd
nearest neighbors: Ji j = {J1, J2}, Ki j = {K1,K2}.

The quadrupolar operators are traceless symmetric



tensors Qαβ ≡ S αS β + S βS α − 4
3δαβ (α, β= x, y, z).

Only five of these tensors are linearly independent,
which are convenient to cast in a 5-vector form:
Q ≡

(
1
2 (Qxx − Qyy), 1

2
√

3
(2Qzz − Qxx − Qyy),Qxy,Qyz,Qxz

)
.

The model Eq. (1) can then be rewritten as

H =
1
2

∑
i, j

(
Ji j −

Ki j

2

)
Si · S j +

1
4

∑
i, j

Ki j

(
Qi · Q j +

8
3

)
. (2)

A time reversal invariant basis for spin-1 is used in this Let-
ter, |α〉 = { |x〉, |y〉, |z〉 }, defined as a unitary transformation
from the regular |S z〉 basis:

|x〉 = i
|1〉 − |1̄〉√

2
, |y〉 =

|1〉 + |1̄〉√
2

, |z〉 = −i|0〉. (3)

Arbitrary single site state can be represented by a unit-length
director ~di in this basis |~di〉 =

∑
α dαi |α〉.

Given a spin state parametrized by director ~di, the energy of
the model Eq. (2) can be readily calculated at the mean-field
level by decoupling 〈Si ·S j〉 ≈ 〈Si〉·〈S j〉 and similarly for 〈Qi ·
Q j〉. Such mean-field decoupling is justified in a minimally
entangled long-range order state, for which the wavefunction
can be written in a separable form |Ψ〉 =

∏
i |~di〉 [36]. The

mean-field ground state energy density is given by:

E0 =
1

2N

∑
i, j

[
Ji j|〈~di|~d j〉|2 − (Ji j − Ki j)|〈~di|~d∗j〉|2 + Ki j

]
, (4)

where N stands for the total number of lattice sites.
We then perform a variational search by minimizing Eq. (4)

with respect to ~di, where the directors ~di are restricted on
2 × 2 and 4 × 4 unit cells with periodic boundary condi-
tion. The purely quadrupolar states are identified with van-
ishing magnetic moment: 〈Si〉 ≡ 2 Re[~di] × Im[~di] = 0,∀i.
Among the quadrupolar states, one distinguishes a FQ phase,
with all directors parallel, and more general AFQ phases with
non-collinear directors. The familiar magnetic phases corre-
sponds to dipolar moment |〈Si〉| = 1,∀i with a spin struc-
ture factor characterized by the Bragg peaks. In general, one
also encounters states that contain a mixture of magnetic and
quadrupolar moments with 0 < |〈Si〉| < 1 on all sites, or
states which have purely magnetic/quadrupolar moments only
on partial sites, or even so-called semi-ordered states with un-
determined |〈Si〉| [36].

The variational mean-field phase diagram is given in Fig. 1,
obtained for antiferromagnetic J1 > 0 and J2/J1 = 0.8, which
were deduced by fitting the INS spectra for BaFe2As2 [37] to
the J1 − J2 −K1 spin model [34, 35]. Due to the fact that FeSe
lies in proximity to CAFM, we do not expect its parameters
to deviate dramatically from those deduced in Refs. [34, 35],
and we have also verified that the magnetic and quadrupolar
phases in Fig. 1 are robust to small variations of J2/J1. Re-
markably, Fig. 1 shows that the only non-magnetic phase in
close proximity to CAFM is the FQ phase, with both phases
realized at negative biquadratic interaction K1. We note that
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FIG. 1. (color online) Variational mean-field phase diagram of the
Hamiltonian Eq. (1) with J1 = 1, J2 = 0.8 and periodic boundary
condition (2×2 and 4×4 unit cells yield exactly the same results) [41].
The dashed lines denote shifted phase boundaries when breaking C4

symmetry in Eq. (1) by hand, using Jx,y
1 = (1 ± 0.2)J1.

K1 < 0 is generically expected from the fitting of the INS
spectra in the iron pnictides/chalcogenides [34, 35], with the
ratio |K1|/J1 of order 1, consistent with the location of CAFM
region in Fig. 1. The large negative K1 is also expected from
the spin crossover model by Chaloupka and Khaliullin [38],
which also incorporates the FQ and CAFM phases; and large
|K1| also naturally arises within the Kugel–Khomskii type
models when the orbitals order inside the nematic phase [39].
No other purely quadrupolar phases were found; in particular
the AFQ(π, 0)/(0, π) phase, expected to be realized for posi-
tive K2 [29] turns out to be unstable to the admixture of the
magnetic moment, resulting in a mixed magnetic/quadrupolar
state with 0 < |〈Si〉| < 1 (grey region in Fig. 1) [40].

Since the variational mean-field calculation only takes into
account minimally entangled mean-field states, the results in
Fig. 1 may be energetically unfavorable upon quantum fluc-
tuations. To verify the stability of the FQ phase, we have
performed the SU(2) DMRG calculations [42–45] on L×2L
rectangular cylinders with L = (4, 6, 8) [46] near the mean-
field FQ/CAFM phase boundary. We keep up to 4000 SU(2)
states, leading to truncation errors less than 2× 10−5 in all
data points presented in this Letter. In Fig. 2, we show both
the static spin and quadrupolar structure factors, defined as
m2

S (q) = 1
L4

∑
i j〈Si · S j〉eiq·(ri−r j) and m2

Q(q) = 1
L4

∑
i j〈Qi ·

Q j〉eiq·(ri−r j) (where i, j are only partially summed on L × L
sites in the middle of the cylinder, in order to reduce bound-
ary effects [44, 47–49]). Fig. 2(a)(b) show the results for
m2

S (q) in the FQ and CAFM phases, respectively; Fig. 2(c)(d)
depict m2

Q(q) in these two phases. Since m2
S (q) and m2

Q(q)
are maximized near (0, π) and (0, 0) respectively, we fix q at
these two momenta, and perform finite size scaling analysis
of m2

S (q) and m2
Q(q) in Fig. 2(e)(f). For large negative K1, it

is clearly shown that the m2
S (0, π) is suppressed from L = 4 to

8, and vanishes in the thermodynamic limit by extrapolation;
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FIG. 2. (color online) Static spin and quadrupolar structure fac-
tors obtained from DMRG on RCL−2L cylinders with J1 = 1, J2 =

0.8,K2 = −1. (a)(b) m2
S (q) for L = 8. (c)(d) m2

Q(q) for L = 8. (e)(f)
Finite-size scaling of m2

S (q = (0, π)) and m2
Q(q = (0, 0)) as a function

of the inverse cylinder width, where the lines are guide to the eye.

while m2
Q(0, 0) remains finite, confirming FQ as the underly-

ing phase. For small negative K1, m2
S (0, π) remains finite in the

thermodynamic limit, confirming the corresponding phase to
be CAFM. We note that the DMRG yields a larger FQ region
with the FQ/CAFM boundary found at K1 > −1.4, compared
to the mean-field prediction of Kc

1 = −1.6 in Fig. 1.
Having established FQ as a stable non-magnetic phase in

close proximity to CAFM, we turn to the analysis of its mag-
netic exictations. We use the flavor-wave technique, which
represents the local spin and quadrupolar operators Oi in terms
of three flavors of Schwinger bosons in the fundamental repre-
sentation of SU(3) [36, 50–52]: Oi =

∑
αβ b†i,αOαβ

i bi,β, subject
to the constraint

∑
α b†i,αbi,α = 1. The quadrupolar solution

corresponds to the Bose-Einstein condensation of the appro-
priate boson (labeled bz), and the remaining two flavors cap-
ture both spin and quadrupolar excitations [36, 50, 51]. Ex-

panding b†i,z = bi,z =

√
1 − b†i,xbi,x − b†i,ybi,y and keeping up

to bilinear terms in the Hamiltonian Eq. (2), it can be diag-
onalized by the standard Bogoliubov transformation αq,a =

cosh θqbq,a − sinh θqb†−q,a, yielding (up to a constant) [40]:

Hfw =
∑
a=x,y

∑
q

ωq,a(α†q,aαq,a + 1/2), (5)

where dispersionωq,a are degenerate in flavor index a = {x, y},
shown in Fig. 3(a). Since FQ phase spontaneously breaks
the spin-rotational symmetry, there are two gapless Goldstone
modes at q = 0. However there is no Bragg peak as the dy-
namical spin structure factor S (q, ω) shown in Fig. 3(b) has
a vanishing spectral weight (∝ |q|) at q = 0, ω = 0 because
of the conservation of time reversal symmetry in quadrupo-
lar states [50, 51, 53, 54]. In Fig. 3(b), we see large spectral
weight at Q1,2 at low energy due to the proximity to the CAFM
phase. The spectral weight further shifts towards (π, π) when
increasing ω (see Fig. 3(c-f)), closely tracking the INS results

FIG. 3. (color online) Dispersion and dynamical spin structure
factor in the FQ phase obtained from flavor-wave calculation with
J1 = 1, J2 = 0.8,K1 = −1.65,K2 = −0.8. (a) Dispersion plotted
in the 1st BZ. (b) Energy-momentum dependence of S (q, ω). (c)-
(f) Constant-energy cuts of S (q, ω) in q-space. (c) ω/J1 = 2. (d)
ω/J1 = 4. (e) ω/J1 = 6. (f) ω/J1 = 8. A Lorentzian broadening
factor λ = 0.8J1 is used for approximating the delta-functions.

on FeSe [24–27]. We note that in the AFQ (π, 0)/(0, π) phase
proposed in Ref. 29, one would expect Goldstone modes with
zero spectral weight at Q1,2, which would contradict the large-
intensity dispersing feature near Q1,2 found in the INS data on
FeSe.

Having demonstrated that FQ phase is indeed consistent
with the INS results on FeSe [24–27], we now ask further
whether FQ phase can coexist with nematicity observed in
FeSe. We apply C4 breaking exchange anisotropy in Eq. (1),
using Jx,y

1 = (1 ± 0.2)J1 in the variational mean-field calcula-
tion. This results in the shift of the phase boundaries (shown
with dashed lines in Fig. 1) and although the FQ phase shrinks
slightly, it clearly remains stable in a large portion of the
mean-field phase diagram.

We now turn to the microscopic origin of nematicity in
FeSe – can FQ order be the reason for the discrete C4 sym-
metry breaking? Unlike other proposals starting with nematic
spin wavefunctions in the ground state [28–30], in the flavor
wave theory up to bilinear terms in Eq. (5), the spin corre-
lations in FQ phase are C4 symmetric. This does not mean
that the FQ ground state cannot spontaneously break this sym-
metry and in fact, it turns out that higher order interactions
(mode-mode coupling) become increasingly important when
approaching the FQ/CAFM phase boundary. Collecting up to
the 4th order terms in the flavor wave theory [40], we obtain
H4th = Hfw +Hint with

Hint =
1
N

∑
abcd

∑
k1,k2,q

Vcd
ab (k1,k2,q)α†k1+q,aα

†
k2−q,bαk2,cαk1,d, (6)

where only five combinations of {abcd} are nonzero:
{xxxx}, {yyyy}, {xxyy}, {yyxx} and {xyyx}. Above, only par-
ticle number conserving terms have been kept for simplicity.
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FIG. 4. (color online) The density-density interactions between the
Q1,2 modes when approaching the FQ/CAFM phase boundary Kc

1 =

−1.6. The parameters used in this plot are J1 = 1, J2 = 0.8,K2 =

−0.8.

In terms of Schwinger bosons, we can define a nematic or-
der parameter as 〈∆〉 =

∑
a〈nQ1,a − nQ2,a〉, where 〈. . .〉 denotes

the expectation value in the full interacting HamiltonianH4th,
and nq,a = α†q,aαq,a is the boson density operator of flavor a
at momentum q. If we stop at the quadratic level of flavor
wave theory, then 〈∆〉fw ≡ 0 due to the Bose-Einstein con-
densation at q = (0, 0). Once interactions are taken into ac-
count in H4th, the condensate will become depleted, resulting
in a finite boson density at the local minima Q1,2 of the spec-
trum in Fig. 3(a) and thus making it possible, in principle, that
〈∆〉 , 0. To see how this may occur, we consider the density-
density interactions between the Q1,2 modes, which can be
extracted from Eq. (6) as:

Hint = Ṽ(nQ1,xnQ2,x + nQ1,ynQ2,y) + Ṽ ′nQ1,xnQ2,y + . . . , (7)

where the intra-flavor and inter-flavor interactions Ṽ and Ṽ ′

are expressed [40] through Vcd
ab (k1,k2,q) in Eq. (6).

The values of Ṽ and Ṽ ′ are plotted in Fig. 4. Intriguingly,
they are repulsive in the region K1 > −3, and diverge when
approaching the FQ/CAFM phase boundary at Kc

1 = −1.6,
resulting in a C4 symmetry-breaking imbalance in boson oc-
cupation nQ1

, nQ2
. Since sufficiently strong (not necessarily

diverging) interactions can commonly trigger diverging sus-
ceptibilities, we expect the renormalized nematic susceptibil-
ity to diverge before reaching the FQ/CAFM phase boundary,
resulting in a finite nematic window KN

1 < K1 < Kc
1 inside

the FQ phase. The existence of such a window should be
carefully verified by further analytical and numerical efforts,
which will be a subject of future work. We note that while
the present study is limited to second-neighbor interactions,
our mean-field analysis shows that inclusion of third neighbor
K3(Si · S j)2 term with K3 < 0 will further favor FQ over mag-
netic phases [40], possibly leading to a wider nematic region.

Direct experimental measurements of quadrupolar orders
are typically difficult, due to the negligible spectral weight
of the spin structure factor near the ordering wave-vector. A

possible way to visualize such “ghost” modes is by applying
a magnetic field: the degeneracy of the two flavors will be
lifted, and one of the Goldstone modes acquires a gap and a
visible spectral weight [53, 54], as we demonstrate in [40].
The quadrupolar orders can also be measured by Raman scat-
tering, which is able to couple to spin and quadrupolar opera-
tors by tuning light polarization and incoming light frequency,
thus showing qualitatively different features for magnetic and
quadrupolar phases [55]. More direct evidence can be gained
from the quadrupolar structure factor, which should exhibit
Bragg peaks at the ordering wave-vector [53], and in prin-
ciple can be measured by resonant inelastic X-ray scattering
experiments [56, 57].

In the present work, the effect of conduction electrons on
the spin dynamics has been neglected for simplicity sake; the
latter lead to an additional broadening of the INS features due
to the Landau damping [35] but do not otherwise impact our
conclusions.

In summary, we showed that FQ phase lies in close prox-
imity to CAFM in the phase diagram of a bilinear biquadratic
spin-1 model and that it is stable in a realistic range of the
model parameters, as verified by both the mean-field and
DMRG methods. The dynamical spin structure factor S (q, ω)
inside the FQ phase is shown to be qualitatively consistent
with the recent INS results on FeSe. While at the quadratic
level the FQ ground state does not explicitly break the C4 lat-
tice symmetry, we demonstrate that the quantum fluctuations
result in repulsive density-density interactions between Q1,2
magnon modes, whose strength diverges on approaching the
FQ/CAFM phase boundary. This suggests the existence of a
finite window inside the non-magnetic FQ phase where the
C4 symmetry is spontaneously broken. Further studies are
necessary to establish such nematic window unequivocally,
however, even if the nematicity is driven by other sources (for
example, local strains due to lattice imperfections; or orbital
ordering, as proposed in the light of recent nuclear magnetic
resonance [58, 59] and ARPES [60] experiments), the incipi-
ent nematic order will couple to the symmetry-breaking quan-
tum fluctuations that we found in the FQ phase. Our calcula-
tions show that the FQ order is robust with respect to such C4
breaking environments and can coexist with nematicity.
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