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We study the propagation of a hole in degenerate (paramagnetic) spin environments. This canonical problem
has important connections to a number of physical systems, and is perfectly suited for experimental realization
with ultra-cold atoms in an optical lattice. At the short-to-intermediate timescale that we can access using a
stochastic-series-type numeric scheme, the propagation turns out to be distinctly non-diffusive with the proba-
bility distribution featuring minima in both space and time due to quantum interference, yet the motion is not
ballistic, except at the beginning. We discuss possible scenarios for long-term evolution that could be explored
with an unprecedented degree of detail in experiments with single-atom resolved imaging.

While classical random walks are well-understood as a dif-
fusive process realized in a wide range of physical systems,
their quantum-mechanical counterparts are far more subtle
[1]. To be more specific, consider vacancy motion in the
paramagnetic phase of solid 3He, or, equivalently, hole prop-
agation in the strongly correlated Mott-insulator (MI) state of
electrons. Even though the dynamics of holes/vacancies are
governed by standard quantum mechanics, the probability am-
plitudes for various trajectories do not interfere the same way
as they do for ballistic motion in a perfect (or spin polarized)
lattice because propagating holes often leave behind a trace
in the spin environment that effectively “records” where they
have been (see Fig. 1). This disrupts quantum interference
between different paths, which, otherwise, would lead to a
much larger mean-square displacement than in the classical
case for the same path arc-length. However, some trajecto-
ries and even whole classes of trajectories (see panel (d) in
Fig. 1) do interfere. This leads to a highly nontrivial propaga-
tion intermediate between the quantum-ballistic and classical-
diffusive limits. Interference between trajectories (leading to
one and the same final state) may also depend on whether the
lattice is bipartite or not, as well as on the statistics of particles
behind the spin components (see below).

a) b) c) d)

Figure 1. Hole propagation in a spin environment. (a) The hole starts
at the lower left corner. As it moves, it leaves behind a trace of altered
spins. In (b,c), the final destination is the upper right corner, yet
the paths taken differ (purple dashed lines), and so do the resulting
spin states. In (d), we show a self-retracing trajectory described as
a necklace of zero-area loops; all such trajectories interfere because
at the end the hole returns to the origin, and the spin environment is
inherently preserved.

In condensed matter systems that are too compli-

cated/strongly interacting to allow for exact solution, accurate
analytic treatment, or viable numerical computations in the
thermodynamic limit, the study of hole propagation in model
systems where lattice sites carry an additional “flavor” index
offers a means of gaining insight into density of states, trans-
port properties, formation of magnetic polarons, and the na-
ture of ferromagnetic instability in MI [2]. Characteristic ex-
amples include the Fermi Hubbard and t − J models [2–5],
the Kitaev-Heisenberg model [6], as well as vacancy motion
in solid 3He crystals [7–9]. In quantum computing and infor-
mation processing, relevant problems and algorithms are also
frequently formulated as quantum walks on a network [10–
12]. Finally, hole propagation in a degenerate spin environ-
ment provides an important physical realization of a system
experiencing so-called dissipation-less decoherence when the
environment “records” particle trajectories with negligible en-
ergy transfer [13, 14].

To the best of our knowledge, the problem of hole propa-
gation in degenerate magnetic environments is still far from
being understood even at the conceptual level despite a con-
siderable long-standing interest in a variety of contexts. On
the one hand, such basic questions as the probability of re-
turn, dynamic formation of magnetic domains, the value of
the diffusion constant (if any) and its dependence on the ini-
tial conditions, remain unanswered theoretically. On the other
hand, it is virtually impossible to obtain accurate experimental
information about hole dynamics and changes in its local spin
environment as it moves along for realistic condensed mat-
ter systems. However, an experimental realization of relevant
model systems in a controlled setup with full access to all lat-
tice sites is now possible using cold atoms/ions trapped in an
optical lattice and imaged with single-site resolution [15–20].
These techniques have previously been applied to study quan-
tum walks, and yield a resolution in the time domain that is
much finer than the inverse hopping, allowing observation of
interference patterns at extremely short timescales [16]. Re-
cently, it has also become clear that N-component fermions
with N > 2 can be realised in optical traps by exploiting nu-
clear spin [21–23]. Remarkably, the most interesting regime
of a near-degenerate spin environment also happens to be the
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least demanding in terms of lattice parameters and system
temperature, and is easily implementable with existing tech-
nology. In fact, the fermionic MI phase corresponding to large
U/J (where J is the hopping matrix element and U is on-
site repulsion) at temperature T > 4J2/U (above the onset
of strong anti-ferromagnetic correlations) was already created
some years ago [24, 25].

In this Letter, we address the topic of a quantum walk un-
dertaken by the hole in degenerate spin environments on a
square lattice with the goal of establishing precise data for
hole dynamics over short-to-intermediate time-scales, testing
existing analytical predictions, discussing open questions and
possible scenarios concerning long-time dynamics, and moti-
vating (apart from providing benchmarks) future experimental
studies.

Physically, our system corresponds to the N -component
Hubbard model

H = −J
∑
〈i,j〉,σ

c†i,σcj,σ + U
∑
i

n2i (σ = 1, 2, . . . , N), (1)

deep into the MI phase, U/J � 1, at high temperature
T � J2/U , i.e. in the absence of antiferromagnetic correla-
tions (which is also the parameter regime where direct single-
site resolved imaging techniques work best). All components
are assumed to have one and the same—either bosonic, or
fermionic—statistics. For brevity we will refer to σ as the
spin index. Then, c†i,σ is the creation operator of a σ-particle
on site i, niσ = c†i,σciσ , and 〈i, j〉 stands for pairs of n.n. sites.
To obtain the time-dependent wave function ψ(t), we expand
the evolution operator in the Taylor series:

U(t) = e−iHt =
∑
n

(−i)n t
n

n!
Hn . (2)

In the U/J → ∞ limit at unit filling factor when doubly oc-
cupied sites are forbidden, the only allowed dynamic process
in (1) is hole-propagation which can be viewed as a quantum
walk that alters the configuration of lattice spins. Then, on a
square lattice with coordination number z = 4, one can de-
scribe Hn as a sum of zn possible trajectories. Using Monte
Carlo simulation techniques, we sample all sums stochasti-
cally [26] and classify trajectories according to their distin-
guishable final states. This allows us to study the evolution of
the spatial distribution function for the hole over some time
interval, limited by the available memory resources. The spe-
cific protocol is as follows:
•We start by proposing n from the Poisson distribution

p(n) =
(zt)n

n!
e−zt , (3)

where time is given in units of 1/J ;
• Then, a random walk of the hole with n steps is conducted
(at each step the hole is moved randomly to one of the n.n.
sites);
• The final displacement of the hole, r, and the resulting
configuration of the spin environment, γ, are registered, and

(−i)n is added to a bin corresponding to the |r, γ〉 state. This
contribution is real or imaginary depending on the parity of n;
• The procedure is repeated, and the set of generated states is
used to construct the wave function

ψ(t) =
∑
r,γ

Aγ(r, t)|r, γ〉 , (4)

where amplitudes Aγ(r, t) are normalized to unity,∑
r,γ |Aγ(r, t)|2 = 1. The spatial probability distribu-

tion for the hole position is then given by

ρ(r, t) =
∑
γ

|Aγ(r, t)|2 ; (5)

• Finally, the entire procedure is repeated for multiple (256)
randomly generated initial states |r = 0, γin〉 to obtain aver-
aged results for ρ(r, t).

There is no extra sign associated with fermionic exchange
cycles in our case because closed trajectories on bipartite lat-
tice always result in an even number of exchanges. Moreover,
since real and imaginary parts of ψ(t) are based on trajec-
tories with different parity of n, the probability distribution
ρ(r, t) remains insensitive to particle statistics even if the lat-
tice is not bipartite. However, if one considers hole propa-
gation in a bose-fermi mixture, then the fermionic sign does
matter. Also, if the initial state is a superposition ψ(0) =∑

r′,β Cr′,β |r′, β〉, then particle statistics become important
on non-bipartite lattices. On bipartite lattices it is always pos-
sible to map between the ferminic and bosonic problems, even
if the initial state is a superposition.

In Fig. 2, we show the “survival” probability ρ(0, t) for sys-
tems with different number of spin components N = 2, 3,
4 and ∞. For comparison, we also include analytic results
for ballistic propagation in a perfect spin-polarized lattice as
well as the Brinkman-Rice (BR) approximation [3]. [The lat-
ter approximates Ā(0, t) = 〈r = 0, γin|ψ(t)〉 by considering
only self-retracing closed paths (see panel (d) in Fig. 1) that
by construction preserve the original spin configuration γin;
then the spacial probability distribution is obtained through
a second approximation given by ρ(0, t) ≈ |Ā(0, t)|2.] Up
to the first minimum, taking place at tmin ≈ 0.9, the differ-
ent scenarios are very similar, suggesting that the underlying
spin degrees of freedom have little effect on the early evolu-
tion, because it is dominated by the self-retracing paths that
inherently preserve the spin environment. Indeed, n = 0, four
n = 2, and thirty two out of forty n = 4 closed loop trajecto-
ries are from the self-retracing set. Still, by excluding certain
trajectories from interference, the BR approximation predicts
tmin much more accurately than ballistic propagation, indi-
cating that dissipation-less decoherence starts playing a role
at this time scale. From Fig. 2 (b) it is clear that all spin sys-
tems exhibit near-complete destructive interference at the first
minimum with survival probabilities dropping below half a
percent.

After the first minimum, the evolution is clearly dependent
on the environment. Since the BR approximation only takes
into account trajectories that preserve the spin configuration,
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Figure 2. Probability of finding the hole at the origin as a function
of time (in units of inverse hopping, 1/J). The two panels show
the same data for different time intervals. The curves correspond to
different spin values N = 2, 3, 4 and∞, the Brinkman & Rice
self-retracing approximation, and ballistic propagation (see legend).
All curves, except that for ballistic motion, follow each other closely
up to the first minimum at t ≈ 0.9, but beyond that point, the details
of the spin environment becomes important to the hole propagation.
The BR approximation is very accurate up to the first minimum, but
quickly fails at longer t.

it goes completely wrong by predicting instances of perfect
destructive interference occurring at a later time [an impossi-
ble effect due to the large number of |γ〉 states contributing to
ρ(0), see Eq. (5)]. The survival probability does show oscilla-
tions in time but they are strongly damped, and, presumably,
go away at longer time scales (determining whether interfer-
ence ceases to be relevant, and if so than at what time scales,
requires access to longer time scales). Unexpectedly, the first
oscillation is much weaker for N = 2 than for N > 2. Intu-
itively, the probablity of finding the hole at the origin should
be higher in systems with larger value of N due to stronger
decoherence effects; what comes as a surprise is the crossing
of the curves at t ≈ 1.9.

Minima and maxima in the survival probability are cor-
related with minima and maxima in the spatial probability
distributions, see Fig. 3. The random walk in a degenerate
spin environment is thus strikingly different from the case of
ballistic motion in a spin-polarized system that features per-
fect destructive interference events at arbitrary long times (see
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Figure 3. Spatial probability distributions ρ(r, t) (Eq. 5). Images
(a-c) correspond to N = ∞ at t = 0.9, t = 1.375 and t = 1.875,
while (d) shows the case of ballistic motion in a polarised lattice at
t = 2. In (a), ρ(0) is close to zero due to destructive interference,
changing to maximum in (b) only to become a local minimum again
in (c) at t = 1.875, which also corresponds to a shallow local min-
imum in the survival probability, see Fig. 2. In the ballistic case,
strong destructive interference is possible at arbitrary long times.

Fig. 3d). Yet the distribution function is not that of a classi-
cal random walk either, which is just a gaussian without local
minima in time or space.
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Figure 4. (a) Logarithmic plot of the mean-square displacement as
a function of time. The lines correspond to cubic polynomial fits to
data. (b) MSD exponent α. At small t it is close to 2, as expected
for coherent propagation in a perfect lattice. Within the timescale of
these simulations, α does not converge to a constant value, so the
precise nature of the propagation at large t (specifically if the motion
is diffusive) remains an open question.

The most natural assumption is that in the long-time limit
decoherence effects ultimately lead to diffusive propagation
characterized by linear dependence of the mean-square dis-
placement (MSD) on time. To see if our simulations have



4

reached this asymptotic behavior, we introduce the time-
dependent MSD exponent α as the logarithmic derivative

α =
∂ ln〈r2〉
∂ ln t

. (6)

Then, α can be deduced from the slope of the MSD curve on
the log-log plot, see Fig. 4a. Fitting a cubic polynomial to
the data we can take the required logarithmic derivative. The
result is shown in Fig. 4b. Clearly, the diffusive regime was
not yet reached within the timescale of our simulations and
we are still in the crossover region (assuming that diffusion
does take place, see below). For t → 0 the motion is nearly
ballistic and α(t→ 0)→ 2, as expected.

Even though diffusion seems to be the most natural out-
come of long time evolution, this quantum walk has several
features that make it fundamentally different from what takes
place in more conventional dissipative environments where
external degrees of freedom have dynamics of their own. In
our case, any change in the spin environment is completely
“slaved” to the hole dynamics. It is also different from co-
herent propagation in static random media, because the spin
environment does change under evolution. The combination
of these two circumstances leads to long-term memory effects
because previously created trajectory “records” can only be
erased or scrambled by the subsequent hole motion. These
(and further) considerations make the problem of long-time
evolution in our system highly nontrivial.
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Figure 5. Hole propagation in a dynamically passive environment
amounts to a quantum mechanical realisation of the N-puzzle game
[27], where a particular order is sought with as few tile movements
as possible. While the classical problem is NP-hard, in the quantum
mechanical system, all possible trajectories are realized in superpo-
sition.

In the limit U/J → ∞, the ground state of the Fermi-
Hubbard model with one hole added to the MI phase is a
ferromagnet (Nagaoka theorem) [2] with a delocalized hole
and a kinetic energy of −zJ . The maximum energy is +zJ ,
and also corresponds to a hole delocalised on a ferromagnetic
background, differing from the ground state only by having
the hole momentum shifted by {π, π}. States with energies
slightly above minimum or below maximum can be realised in
the form of a hole delocalised in a finite sized ferromagnetic
“bubble,” i.e. they constitute a type of low and high energy
polarons [28, 29].

The fact that the energy is bound so that−zJ ≤ ε ≤ zJ has
important implications for experimental realisations with op-

tically trapped atoms. These are generally implemented with
a harmonic trap, and so the hole is effectively subject to an
inverted harmonic trap—it attains a potential energy that is
maximal in the center of the trap; U(r̄) ≈ αr2, α < 0. The
maximum energy that the hole can absorb is ∆Emax = 2z|J |
implying that if the hole originates in the center of the trap,
then it is bound to a region |α|r2 ≤ ∆Emax → |r̄| ≤ rmax =√

∆Emax/|α|. In addition, any hole found sufficiently close to
|r̄| = rmax has absorbed enough energy to necessarily form a
high energy polaron. While it is possible to find ferromagnetic
regions in a degenerate system by sheer accident, these can
also be assembled by hole motion; compare to the N-puzzle
game in Fig. 5. In this sense, the most energetic states can
be viewed as a particular class of (ferromagnetic) solutions to
the N-puzzle game that are strongly correlated with large hole
displacement.

The presence of polarons in this model also raises questions
about hole mobility in the absence of a harmonic trap (or in the
interior of the trap where the potential energy changes slowly).
Specifically, such objects should move slowly, suggesting that
the edges of the energy spectrum are associated with reduced
hole mobility.

In conclusion, we find that at the early stages, the quantum
walk of a hole in a degenerate spin environment is profoundly
different from both the classical diffusive case and the quan-
tum ballistic propagation in a polarized environment. Whether
the motion is diffusive in the long-time limit remains an open
question. We point out mechanisms that give rise to long-
term memory effects, making interference and thus mobility
highly nontrivial. We also propose that polarons at the edges
of the energy spectrum may be associated with impaired hole
mobility. Such effects are however outside of the capacity of
our simulation software, which is limited in terms of accessi-
ble time scales. Unitary evolution of the entire system further
complicates the observation of polarons because holes in ran-
dom local spin configurations and holes in “bubbles” are in a
superposition state. One possible solution is to study dynam-
ics of initial states with holes delocalized in “bubbles.”

We argue that real progress in understanding this long-
standing problem is possible by performing experiments with
ultra-cold atoms in optical lattices and studying the hole dy-
namics using single-site resolution imaging. The most inter-
esting parameter regime (U/J � 1, T � J2/U , deep in the
MI phase at relatively high temperature) is already widely ac-
cessible. In this limit, single-site imaging techniques work
best and can provide an unprecedented amount of detail about
hole-evolution as well as the state of the environment that is
left behind. Moreover, experimentally, one can reach time-
scales orders of magnitude longer than in our simulations,
which can be used to benchmark experimental data at inter-
mediate times.
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Quantum Phases of Matter” from AFOSR and the Wenner-
Gren Foundation though a postdoctoral stipend. Computa-
tions were performed on resources provided by the Swedish



5

National Infrastructure for Computing (SNIC) at the National
Supercomputer Center in Linköping, Sweden.

[1] Y. Aharonov, L. Davidovich, and N. Zagury, Phys. Rev. A 48,
1687 (1993).

[2] Y. Nagaoka, Phys. Rev. 147, 392 (1966).
[3] W. F. Brinkman and T. M. Rice, Phys. Rev. B 2, 1324 (1970).
[4] S. A. Trugman, Phys. Rev. B 37, 1597 (1988).
[5] S. A. Trugman, Phys. Rev. B 41, 892 (1990).
[6] F. Trousselet, P. Horsch, A. M. Oleś, and W.-L. You, Phys. Rev.
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