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Single point measurement turbulence cannot distinguish variations in space and time. We employ
an ensemble of one- and two-point measurements in the solar wind to estimate the space-time
correlation function in the comoving plasma frame. The method is illustrated using near Earth
spacecraft observations, employing ACE, Geotail, IMP-8, and Wind datasets. New results include
an evaluation of both correlation time and correlation length from a single method, and a new
assessment of the accuracy of the familiar frozen-in flow approximation. This novel view of the space-
time structure of turbulence may prove essential in exploratory space missions such as Solar Probe
Plus and Solar Orbiter for which the frozen-in flow hypothesis may not be a useful approximation.

Introduction. The solar wind provides a natural lab-
oratory for fundamental study of plasma turbulence in
parameters ranges difficult to achieve in the laboratory
(e.g., [1]), and often accessible only through remote sens-
ing [2, 3]. Fluctuations in space and time are character-
istic of turbulence and each have significant influence in
space and astrophysical contexts. The two point corre-
lation functions and associated spectra [4, 5] are essen-
tial turbulence diagnostics in applications such as plasma
heating [6], solar wind acceleration[7], the scattering and
transport of energetic particles [8, 9], magnetic field con-
nectivity [10, 11] and geospace prediction (space weather)
[12]. Time correlation enters these applications as well,
but in somewhat different ways [9, 11], as is also well es-
tablished in turbulence theory [13]. However, for most in
situ interplanetary observations, made by a single space-
craft, there is an almost complete ambiguity between spa-
tial structure and temporal structure. For fast flows, the
Taylor frozen-in flow approximation [14] (or, Taylor hy-

pothesis) provides an estimate of purely spatial statis-
tics, with quantifiable limitations on accuracy [15–19].
The time correlation and the space correlation have not
been previously treated on the same footing in interplan-
etary datasets, as far as we are aware. Here we employ a
multispacecraft methodology to present a novel view of
the space-time correlation of interplanetary turbulence.
We show how numerous one- and two-spacecraft mea-
surements may be combined, without use of the Taylor
hypothesis, to determine correlation functions in which
length and time separations are treated as independent.
This method can provide a wealth of information about
turbulence structure and dynamics, and may become a
valuable tool for interpreting present and future inter-
planetary datasets.

Background. We consider space-time structure of fluc-
tuations in interplanetary space. For simplicity we dis-

cuss only the magnetic field vector B(x, t), a function
of space x and time t coordinates. The dependent vari-
ables could also be velocity, density, temperature or other
quantities. The magnetic field B(x, t) = B0 + b is sep-
arated into ensemble mean 〈...〉 and fluctuating parts;
the mean is 〈B〉 = B0, the fluctuation (turbulence) is
b = B − B0. The variance is σ2 = 〈|b|2〉. Usually the
ensemble average is equivalent to a suitably chosen time
averaging procedure. Of interest is the two-point, two-
time correlation function

R(r, τ) = 〈b(x, t) · b(x+ r, t+ τ)〉, (1)

which for stationarity and homogeneous turbulence is a
function only of the spatial lag r and the time lag τ [20,
21].
From R(r, τ) in Eq.(1), one readily computes several

quantities of interest in turbulence theory. For example,
setting τ = 0 one arrives at the two point spatial correla-
tion R(r) ≡ 〈b ·b′〉, the prime here denoting a convenient
abbreviation for the (spatially) lagged point. The corre-
lation length (energy-containing scale) is defined as an
integral, λc ≡

∫
∞

0
R(r′, 0, 0)dr′/〈|b|2〉. The second order

structure function S(r) = 〈|b − b
′|2〉 is found immedi-

ately from R = 〈|b|2〉 − 1

2
S. From the Fourier transform

of R(r) in r, one obtains the magnetic energy spectrum, a
quantity often discussed in the literature (e.g., [4, 5, 22]).
Purely time domain statistics emerge upon setting r = 0
to obtain the Eulerian (one point, two time) correlation
function RE(τ) = R(0, τ) = 〈|b(0, 0) · b(0, τ)|2〉, which
has deep ties to accelerations, intermittency and sweep-
ing effects in turbulence [23, 24] and impacts scattering
of energetic particles [9].
Measurement techniques. The usual approach to com-

pute two-point correlations (or spectra) in the solar
wind employs single spacecraft measurements as a func-
tion of time, where the wind flows past the detector at
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FIG. 1: (Left) Space-time separation plane in the average
solar wind plasma frame. Downward diagonal through the
origin is path observed by a single spacecraft (s/c). Vertical
axis is locus of pure spatial correlations. Taylor hypothesis
approximates spatial correlation with single s/c correlation.
Upper diagonal is path observed by 2 s/c time-lagged corre-
lations. (Right). With many samples, it is feasible to obtain
substantial information about the plasma frame space-time
correlation. Here only one spatial coordinate is shown for
simplicity

super-Alfv’enic and super-magnetosonic solar wind speed
Vsw . In the (single-)spacecraft (∗) frame one measures
R∗(0, τ). The assumption that the structures measured
are static during the time of passage of the detector leads
to the relation R∗(ẑVswt, 0) ≈ R∗(0,−t) where ẑ is the
direction of solar wind flow, usually very close to radial.
This is the widely-used Taylor frozen-in flow hypothesis,
or simply, the Taylor hypothesis, which has also been
examined for accuracy in multispacecraft studies (e.g.,
[16–18]).
Here we do not invoke the Taylor hypothesis. Instead,

a key step is to transform each measurement into the so-
lar wind frame. A single spacecraft measurement trans-
forms into the frame moving with the solar wind as

R∗(0, τ) → R(−ẑVswτ, τ) (2)

where the ∗ indicates the spacecraft frame. We con-
sider also two spacecraft (SC1 and SC2) measurements,
where the (fixed) spatial separation of the pair is r0.
Note that the extension of the Taylor hypothesis used
by Osman and Horbury [15] is equivalent to R∗(r0, τ) ≈
R(r0 − ẑVswτ, 0). Once again, such an approximation is
not invoked here. Instead, one may also examine two
point measurement with SC1 data unlagged, and SC2
data transformed to the moving frame, and therefore
without approximation accumulating a correlation that
is lagged in both time and space. In that case, the trans-
formation of a time lagged two point correlation mea-
surement to the solar wind frame becomes

R∗(r0, τ) = 〈b(0, 0) · b(r0, τ)〉 (3)

→ R(r0 − ẑVswτ, τ), (4)

where the magnetic field b = b
∗ is invariant under the

Galilean transformation.
Eq. (4) provides the basis of the present technique

for determining the space time correlation: We compute
correlation functions from many pairs of synchronized
datasets, thus defining the ensemble of interest, and ac-
cumulate these in the solar wind frame, in the selected
plane spanned by space lag and time lag. See Fig. (1).
Implementation and datasets. We employ simultane-

ous epochs of synchronized vector magnetic field data
recorded by the instruments on the ACE, Geotail, IMP-
8, and Wind spacecraft [25–27]. A total number of more
than 1000 pairs of such datasets are employed in the
reported analysis. Previous publications describe the
datasets, evaluation of stationarity, bad data removal,
and the software framework, which has been well-tested
in related studies [18, 19, 29]. The cleaned data are
sorted into ranges of mean solar wind speed, an impor-
tant organizing parameter for classifying types of solar
wind streams.(see e.g., [28]). Fast solar wind tends to
be on average hotter, less dense, and more steady than
slow solar wind. We will describe results obtained from
the entire ensemble as well as subsets that include only
fast solar wind intervals, and slow solar wind intervals,
as defined below.

FIG. 2: (left) Space-time correlation of the full ensemble of
solar wind magnetic field interval pairs described in the text,
presented in the format R(r, ∗, ∗, τ ) where the “∗”s indicate
averaging over the transverse separations. (Right) Same cor-
relation, with annotations showing various sampling direc-
tions: spatial correlation, time correlation, fast single space-
craft trajectory, and slow spacecraft trajectory, such as Solar
Probe. The content of the Taylor hypothesis is illustrated, as
described in the text.

Results. Each of the datasets were analyzed as follows.
Each synchronized pair were subject to a time lagged
correlation according to Eq. (4), in each case normal-
izing by the variance of the interval. A cross correla-
tion between the two spacecraft is computed, with in-
trinsic separation between the spacecraft r0, along with
a time lag τ . Upon transformation into the frame mov-
ing with the mean plasma speed, each cross correlation
contributes a series of measurements along a diagonal
of the type shown in the upper half of Fig. (1). Each
time series is also individually analyzed as a time lagged,
variance-normalized autocorrelation, which, in the mean
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solar wind frame, contributes the correlation in Eq. (4)
with intrinsic separation vector r0 = 0, as illustrated in
the lower half of Fig. (1).

FIG. 3: Space-time correlation function R(|r|, τ ) as function
of magnitude of separation |r| and τ , for samples of (left)
slow wind, and (right) fast wind. Note that the orientation of
axes differs from Fig 2. Time axis is vertical, and to facilitate
the fast/slow wind comparison, space separation increases to-
wards the left (right) for the slow (fast) wind case.

To average the correlation estimates, and cover the
space-time plane with sufficient accuracy, a grid of space-
time bins is established, and all estimates lying within a
given bin are totaled, and then averaged when the se-
lected ensemble is fully processed. A coarser grid gives
higher statistical weight. The main results shown here
are accumulated in bins of size 1.91 × 105 km in each
resolved spatial direction, and 120 s in the time direc-
tion. After more than 1000 dataset pairs are analyzed,
the variation of solar wind speed and intrinsic spacecraft
separation allows a large fraction of the correlation plane
to be covered. The rendering by Matlab routine contourf
provides a smooth interpolation in the space-time plane.

The accumulated averaged correlation data is dis-
played in Fig.(2) in the solar wind frame of reference.
Plotted is the magnetic field autocorrelation R(X, ∗, ∗, τ)
where the ∗ indicates and average over the associated
cartesian coordinate. The remaining spatial dependence
X is the separation in the outward radial direction. As
usual, τ is the time lag. A few features warrant imme-
diate comment. The observed correlation function falls
off almost monotonically from its central maximum. The
decrease in the spatial direction occurs over a scale on the
order of 106 km, consistent with the observed correlation
scale near Earth orbit obtained by single spacecraft mea-
surements employing the Taylor hypothesis [4] and with
prior multiple spacecraft measurements [15, 29]. In the
time direction, the falloff is occurs over a timescale of
about 30-50 minutes. This too is consistent with previ-
ous multispacecraft estimates of the Eulerian decorrela-
tion time [18, 19] based on a different approach.

Fig. (2) provides added annotation to aid interpreta-
tion. The vertical axis is the purely spatial correlation,
related directly to the familiar spatial wavenumber spec-
tra and structure functions that enter into the most fa-
miliar Kolmogorov (“5/3”) theory of turbulence. This is

FIG. 4: Correlation function R(|r|, τ ) sampled along three
directions in space-time. (Black, squares) Purely spatial cor-
relation R(r, 0) plotted vs r; (Blue, diamonds) Typical obser-
vation made in a solar wind flow at speed Vsw by a single
spacecraft, R(Vswτ, τ ). These are approximated as equal in
the Taylor hypothesis. Third curve (red, plus signs) is the
purely temporal correlation R(0, τ ) plotted vs τ on upper axis.
Error bars (standard error of the mean) are representative of
counting statistics throughout the analysis.

usually not measured in the solar wind, but instead mea-
surements are made along the main decreasing diagonal,
in the spacecraft frame, as illustrated. This is intrinsi-
cally a mixture of space and time signals. As indicated in
the figure, the Taylor hypothesis approximates as equal
the values along the spacecraft frame diagonal and the
vertical spatial correlation axis. The horizontal axis, as
indicated in Fig. (2) corresponds to the purely time (or
Eulerian) correlation, which to our knowledge has not
been evaluated directly from data for any space plasma
previously. Direct Eulerian measurement with a single
spacecraft would require a detector moving outward at
the solar wind speed.

To move towards more quantitative results, we accu-
mulate separately data for fast (Vsw > 550 km/s) and
slow (250 km/s < V sw < 450 km/s) solar wind mean ve-
locity intervals. These ranges are chosen to approximate
regimes associated with distinct behavior of temperature,
density, and other properties as described for example by
McComas et al. [28]. Here the correlation is expressed as
a function of time lag τ and the magnitude of the vector
separation |r|. These two correlation functions are shown
in Fig (3). Note the change in format to facilitate this
comparison is explained in the caption. The spatial ex-
tent of the fast and slow wind correlations is similar but it
is immediately evident that the plasma frame slow wind
correlation persists for larger time separations. This is
consistent with a prior estimate in which only the time
scale of decorrelation was estimated [19]. Table I shows
quantitative comparisons of correlation scale λc, frozen-
in flow correlation scale λ∗

c , and Eulerian correlation time
τc, obtained by separate analysis of fast and slow wind
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TABLE I: Correlation length λc =
∫

∞

0
R(r′, 0, 0, 0)dr′/〈|b|2〉,

correlation length associated with single spacecraft frame us-
ing frozen-in flow, λ∗

c
=

∫
∞

0
R(Vswτ, 0, 0, τ )dr

′/〈|b|2〉, and the

correlation time, Tc =
∫

∞

0
R(0, 0, 0, t′)dt′/〈|b|2〉. each for fast

wind, slow wind and total sample.

Slow Fast All
λc (km) 441000 395800 434900
λ∗

c
(km) 223100 259400 234400

Tc (s) 1914 1673 1720

data. As anticipated the correlation time and correlation
length are both larger for the slow wind, which is consis-
tent with the perspective that the slow wind is an older,
more developed example of turbulence [30, 31].
Further examining these new results, one may read-

ily verify that the correlation lengths reported in Table
I are in the same range as many earlier single spacecraft
results [30], and are about a factor of two smaller than
earlier multispacecraft results [29]. This level of vari-
ability in different populations is not unexpected given
that the distribution based on of individual samples is
broadly distributed (in fact, log-normal [31]). The Eule-
rian decorrelation time here is found to be longer in slow
wind than in fast wind, as estimated earlier using a dif-
ferent (and more approximate) method [19]. The most
significant difference with respect to that earlier case is
that both fast and slow wind correlation times are factor
of three to four times smaller in the present case.
As a final diagnostic, one may compare the spatial

decorrelation, the time correlation and the decorrelation
seen by a typical spacecraft by sampling the empirically
determined correlation function along different directions
in space-time. Fig. (4) provides such a comparison,
showing the R(|r|, τ) correlation, sampled as R(r, 0) vs
r; R(Vswτ, τ) vs r = Vswτ , with Vsw the ensemble av-
erage solar wind speed; and R(0, τ) vs. τ . The nearly
flat regime in the Eulerian time correlation appears to be
real, and will require further study. Quantitative compar-
ison of the spatial correlation and the single spacecraft
correlation provides a first illustration of the accuracy of
the Taylor hypothesis. This comparison is made quanti-
tative in Table II. One observes that the relative error in
the frozen-in Taylor result is largest at large scales, and
grows smaller at smaller lags.
Discussion. We have demonstrated a novel approach

to assembling a space-time correlation from a collection
of single spacecraft and two spacecraft solar wind obser-
vations, using no dynamical approximations and a min-
imal number of kinematic approximations (e.g., space-
craft motion is ignored within each interval). All cor-
relation functions are fundamentally ensemble averaged
quantities, and therefore will be sensitive to the proper-
ties defining the ensemble. Here we showed two versions:
the first dependent on the radial coordinate and time,
averaged over the transverse coordinates; the second de-
pends on magnitude of vector separation and time and
was separated into fast wind and slow wind sub ensem-

TABLE II: Comparison of correlation function R(|r|, 0) and
its proxy from the Taylor hypothesis R(Vswτ, τ ). Errors nor-
malized to the sum of absolute values of the two estimates
and are averaged over Large, Medium and Small ranges of
scale.

Percent difference: Slow Fast All
Large (1.0-1.3 Mkm) 100% 81.9% 100%
Medium (0.5-0.8 Mkm) 40.8% 16.9% 31.5%
Small (0.1-0.4 Mkm) 18.1% 10.1% 16.6%

bles. Others are possible; for example, one might assume
isotropy, or alternatively, axisymmetry, in which the spa-
tial coordinates are resolved into components parallel to,
and perpendicular to, the sample mean magnetic field
directions. Further study in that direction will require
substantial effort and is deferred to future publication.

We remark briefly on the relationship of this work to
earlier studies in plasmas and fluids. Direct numerical
simulation affords the opportunity to analyze the full
space-time system in a straightforward way, in fluids [32]
as well as in magnetofluids [33] and plasmas [34, 35]. We
anticipate developing such results for comparison with so-
lar wind correlations in the near future. The kinematic
basis for assembling measurements in the space time do-
main has been well understood in the fluid experiments
[36–38] but not applied in space or plasma observations
previously to our knowledge.

Analytical study of the relationship between space cor-
relations and time correlations has been an ongoing effort
in turbulence theory, taking on two major approaches:
First, for very small scales the correlations take on a
simple interrelated elliptical form for homogeneous sta-
tionary turbulence [36]; this model has been revived at
least several times [39–41]. This regime is not expected
until small scales are probed, comparable to the dissipa-
tion scale [42]. A second major approach for analytical
modeling is random sweeping, and idea originally devel-
oped by Heisenberg and later Kraichnan and collabora-
tors [24, 43]. Random sweeping provides a reasonable
approximation in the inertial range of hydrodynamics
[24, 32] and magnetohydrodynamics (MHD) [33, 41], and
is useful in applications such as cosmic ray scattering [9];
it may also be extended to include waves [44].

Because the space time correlation is closely tied to
turbulence theories [20] including closures [e.g., [13]),
higher order statistics [23] and time variability [24], we
expect that the present work will open the door to a
better integration of those theories into space and astro-
physical plasma studies. The present results show how
the space-time correlation in the solar wind may be deter-
mined experimentally. A next step is to employ theory
and numerical simulations to further interpret and ex-
ploit these results. Refinements and extensions of these
results are currently underway, and are expected to pro-
vide guidance for anticipating and explaining the obser-
vations to be made in the near future by exploratory
missions such as Solar Probe Plus and Solar Orbiter.
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