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A stability analysis is presented for boundary driven and out of equilibrium systems in the frame-
work of the hydrodynamic macroscopic fluctuation theory. A Hamiltonian description is proposed
which allows to thermodynamically interpret the additivity principle. A necessary and sufficient
condition for the validity of the additivity principle is obtained as an extension of Le Chatelier prin-
ciple. These stability conditions result from a diagonal quadratic form obtained using the cumulant
generating function. This approach allows to provide a proof for stability of the weakly asymmetric
exclusion process and to reduce the search for stability to the solution of two coupled linear ordi-
nary differential equations instead of non linear partial differential equations. Additional potential
applications of these results are discussed in the realm of classical and quantum systems.

PACS numbers:

Understanding out-of-equilibrium systems is an essen-
tial problem in physics [1] but surprisingly enough, it still
lacks both a macroscopic approach comparable to ther-
modynamics and a microscopic theory. However, a fruit-
ful hydrodynamic description of driven diffusive systems
far from equilibrium, the macroscopic fluctuation theory
(MFT) has been proposed [2]. It is based on a variational
principle which provides equations for the time evolution
of the most probable density profile corresponding to a
given fluctuation. The MFT was used to explore aspects
of out of equilibrium systems [3–8]. The case of cur-
rent fluctuations has been singled out due to its relevance
to problems generically known as full counting statistics
which play an important role both in classical and quan-
tum systems [9–13]. Quite often, a classical description is
convenient enough to account for the behaviour of quan-
tum systems driven out of equilibrium [14–18]. A great
amount of effort has been devoted to the investigation of
large current fluctuations since they provide a measure of
the likeliness of the system to return to equilibrium. Cur-
rent fluctuations close to the steady state are expected
to be time independent, but far away, the system may
choose a time-dependent fluctuation, very much like a
phase transition.

To make these considerations more precise, we con-
sider a large system of size L connected to reservoirs
of particles at different densities. The system reaches
a non-equilibrium steady state with a fluctuating parti-
cle current. These fluctuations are characterised by the
probability Pt (Q) for having Q particles flowing through
the system during a time t. In the long time limit, this
probability follows a large deviation principle [19, 20],

1

t
logPt (Q) ≡ −

1

L
Φ (Q/t) (1)

Finding an explicit expression for the large deviation
function Φ is a difficult optimisation problem. However,
a useful and elegant additivity principle (AP) has been

formulated [21] which, by assuming that the optimal cur-
rent trajectory is time independent, reduces the calcula-
tion of Φ to solving a Euler-Lagrange equation. A break-
down of the AP signals the onset of a dynamical phase
transition. One purpose of this letter is to formulate a
necessary and sufficient condition for the validity of the
AP for boundary driven systems with and without uni-
form external field E. This will extend previous results
[22–24] and allow to discuss the existence and nature of
such transitions.
Although out of equilibrium physics requires new ap-

proaches, different from the familiar thermodynamics
concepts, it is intuitively helpful to relate these two sit-
uations. A powerful idea to study systems at thermo-
dynamic equilibrium is provided by Le Chatelier princi-
ple which states that the net outcome of a fluctuation
is to bring the system back to equilibrium, or, stated
otherwise, thermodynamic potentials are concave (con-
vex) functions. It is possible, using Onsager relations to
extend Le Chatelier principle to systems out of equilib-
rium. To that purpose, we recall that a system brought
slightly out of equilibrium by the application of forces Xi

such as temperature or density gradients, behaves diffu-
sively and creates fluxes Ji linearly related to the forces,
Ji =

∑

j Lij Xj. Forces and their related fluxes are such
that products Ji Xi are additive terms in the correspond-
ing entropy creation. A generalisation of Le Chatelier
principle is obtained from the expression s =

∑

i Ji Xi

of the entropy creation per unit time. Thus, using the
definition of the Ji’s and the symmetry of the Lij ’s leads
to the positive quadratic form,

s =
∑

ij

Lij Xi Xj , (2)

which implies that Lmm ≥ 0. Then, varying the forceXm

by δXm, we obtain from (2) that Jm δXm ≥ 0, namely
the flux and the fluctuation generating it are always of
the same sign, so that the response of the system tends
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to act against the perturbation. This is the content of Le
Chatelier principle for non equilibrium and its breakdown
signals the possible onset of a phase transition.

We wish now to implement these ideas using the MFT.
To that purpose and for the sake of simplicity, we restrict
our study to one-dimensional systems although general-
isations to higher dimensions have been proposed [25].
We consider a lattice gas such that ni(t), i ∈ 1, ..., L de-
note the time-dependent occupancies of the L ≫ 1 sites
of the system coupled to two reservoirs at its endpoints.
The MFT relies on the replacement of the dynamics of
the system (either deterministic or not) by a stochas-
tic hydrodynamic equation which describes correctly the
fluctuations of the driven system in the long time and
large size limits. The relevant physical quantities are the
density ρ (x, τ) and the current density j (x, τ) of a fluc-
tuating diffusive system, with the scaling x = i/L and
τ = t/L2. The boundary conditions for the density are
fixed by ρl,r at the left/right boundaries x = 0, 1. The
evolution of the system in the presence of an external
field E, is described by a Langevin equation,

j (x, τ) = −D (ρ) ∂xρ+ Eσ(ρ) +
√

σ(ρ) η (x, τ) , (3)

together with the continuity equation ∂τρ = −∂xj.
The term η (x, τ) is a multiplicative white noise with
zero mean and variance 1

Lδ (x− x′) δ (τ − τ ′). The phe-
nomenological diffusion, D (ρ), and conductivity (trans-
port) σ (ρ) coefficients may be obtained from the details
of the microscopic process. On average, the current is
determined by Fick’s law and by a term proportional to
the applied field E (linear response to a weak field). The
strength σ (ρ) of the noise term (dissipative conductiv-
ity) is related to the Fick’s term by means of a Einstein
relation just as in the equilibrium fluctuation-dissipation
relation [26]. This generalises the usual Langevin equa-
tion where the strength of the stochastic noise is driven
by temperature only.

The number of particles Q in (1), is the integral of the
current density,

Q = L2

1
∫

0

dx

t/L2

∫

0

dτ j (x, τ) . (4)

The two coefficients D (ρ) and σ (ρ) can be expressed
using the first two cumulants of the probability Pt(Q).
To further establish these expressions, we consider now
the case E = 0 in (3). In the limit ρR − ρL = ∆ρ ≪ 1
of a slightly out of equilibrium system, the steady state
average current 〈Q〉 /t is obtained from (4) and given by
〈Q〉 /t = − 1

LD (ρ)∆ρ. For ∆ρ → 0, the variance of the
integrated current is

〈

Q2
〉

C
/t = 1

Lσ (ρ).

The probability Pt (Q, ρL, ρR) is obtained in this
framework using a stochastic path integral representa-

tion [9, 27, 28]

Pt ({j, ρ}) ∼ exp

[

−L

∫ t/L2

0

dτ

∫ 1

0

dxL

]

, (5)

corresponding to a set {j (x, τ) , ρ (x, τ)} of current and
density trajectories. The Lagrangian density L (ρ, ∂xρ)
is,

L =
(j +D (ρ) ∂xρ)

2

2σ (ρ)
, (6)

and a saddle point approximation for large L allows to
rewrite the large deviation function in (1) as [22],

Φ

(

Q

t

)

=
L2

t
inf
j,ρ

∫ t/L2

0

dτ

∫ 1

0

dxL , (7)

where the minimum is over all ρ (x, τ) and j (x, τ) profiles
defined in the time interval 0 < τ < t/L2 and which sat-
isfy the continuity equation and relation (4). The hard
minimisation problem of finding the optimal current tra-
jectory j (x, τ) greatly simplifies by assuming the optimal
current to be constant, j (x, τ) = J (up to a macroscopi-
cally negligible transient), so that (4) rewrites Q/t = J .
This assumption introduced in [21], is known as the ad-
ditivity principle (AP). A spatially constant current im-
plies, through the continuity equation, a stationary den-
sity ρ(x), so that the corresponding Lagrangian density
obtained from (6) and now denoted LJ becomes time-
independent. Therefore, the AP amounts to replacing
Φ (J) in (7) by

U (J) = inf
ρ(x)

∫ 1

0

dxLJ (ρ(x), ∂xρ(x)) . (8)

Note that the time variable in usual Lagrangian descrip-
tion is replaced here by the spatial coordinate. The ap-
proximate large deviation function U (J) and the trajec-
tory of ρ(x) for the stationary density profile under the
AP assumption, are then obtained from the associated
Euler-Lagrange equation d

dx
δLJ

δ∂xρ
= δLJ

δρ . It is useful to
look at the equivalent Hamiltonian formalism, where the
corresponding Hamiltonian is [29]

H (P , q) =
1

2m (q)
[P − eA (q)]

2
+ V (q) , (9)

with the definitions q = ρ and P = δL
δ∂xρ

for the conju-

gate momentum. The Hamiltonian (9) describes a single
particle of q-dependent mass m (q) = D2 (q) /σ (q) and
of charge e = J placed in scalar, V (q) = −e2/2σ (q)
and ”vector” A (q) = D (q) /σ (q) potentials. As just
stressed, space replaces time, namely, time conservation
in Hamiltonian systems translates here into a conserva-
tion in space of the associated energy H (P , q), so that
the energy is spatially uniform. This provides a useful
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analogy with thermodynamics where, at equilibrium, the
total energy is uniformly distributed in space. Therefore,
the AP provides, for out of equilibrium systems, the ana-
log of a thermodynamic description.
A careful study of the conditions under which the AP

is valid thus appears to be essential, since a breakdown
of the AP may signal the onset of a (dynamical) phase
transition. This question has been investigated in [22]
for closed systems with periodic boundary conditions,
ρ(0, τ) = ρ(1, τ), and a sufficient and necessary condition
for the validity of the AP has been given. However, in
that case, periodic boundary conditions and particle con-
servation greatly simplify the problem. Here, we wish to
provide a necessary and sufficient condition for the valid-
ity of the AP in boundary driven systems. This question
has been addressed using a direct stability analysis of the
large deviation function against time dependent pertur-
bations [30], but without a conclusive formulation of a
validity criterion for the AP. Although the large devia-
tion function is usually considered to study the stability
of the AP solution, we find it far more convenient to work
with its Legendre transform,

µ (λ) = −
1

L
inf
J

{Φ (J)− λJ} =
1

t
ln
〈

eλQ/L
〉

, (10)

since this choice allows to relax the continuity equation
constraint and to reformulate (4) as a boundary condi-
tion [31, 32] . The notation 〈 · 〉 stands for averaging with
respect to Pt (Q) given in (1). Being cautious about the
corresponding change of boundary conditions, it is pos-
sible to relate µ(λ) to the MFT description by,

〈

eλQ/L
〉

=

∫

DqDp exp

[

−L

∫

dx dτ S (x, τ)

]

, (11)

where q stands for the density, p is a Lagrange multiplier
associated to the continuity equation [32] and the action
S (x, τ) is given by

S (x, τ) = D∂xq ∂xp−
σ

2
(∂xp)

2
+ (p− λx) ∂τq . (12)

The corresponding equations of motion can be readily
obtained from δS/δq = δS/δp = 0 [33],

∂τ q = ∂x (D∂xq)− ∂x (σ∂xp)

∂τp = −D∂xxp−
σ′

2
(∂xp)

2 (13)

where the notations (D′, σ′) stand for derivatives w.r.t.
the density q. Now we consider the AP which assumes
time-independent density and momentum, so that taking
∂τ q = ∂τp = 0, the AP equations of motion become
two ordinary differential equations for the corresponding
(q0, p0) with the time-independent boundary conditions

{

q (0, τ) = ρl q (1, τ) = ρr

p (0, τ) = 0 p (1, τ) = −λ .
(14)

The most probable density profile under the AP, is ob-
tained by solving these Hamilton-Jacobi equations with
boundary conditions (14).
To discuss the stability of the AP solution, we con-

sider the effect of time-dependent fluctuations δq(x, τ)
and δp(x, τ) on the extremum solution (q0, p0) and we
calculate the variation δS2

AP of the action (12) up to sec-
ond order in (δq, δp) [34].
Using a general result for stability of Hamiltonian sys-

tems, the variation δS2
AP , can be written as the diagonal

quadratic form [32, 35],

δS2
AP (x, τ) = −

D′σ′ − σ′′D

4D
(∂xp0)

2
δq2 −

σ

2
(∂xδp)

2
.

(15)
This expression constitutes one of the main results of this
letter. It could not be obtained or even anticipated [32]
using the large deviation function formalism. The diago-
nal quadratic form makes it easy to discuss the validity of
the AP approximation which requires

∫

dx dτ δS2
AP < 0,

a condition equivalent to Le Chatelier condition (2). Not-
ing that σ and D are non negative (for any q), then,
having

D′σ′ ≥ σ′′D , (16)

in (15) implies
∫

dx dτ δS2
AP ≤ 0 for any fluctuation

(δq, δp). Therefore (16) is a sufficient condition for valid-
ity of the AP solution. An apparently related but much
more stringent condition has been obtained by Bertini
et al. [22]. Indeed, whereas (16) needs to be only valid
for the density profile q0 = ρAP , the related condition
in [22] must be verified for all values of q [36]. However,
since the variations δq and δp are not independent but
related by (the conveniently linearised) equations (13), it
is clear that (16) is not a necessary condition for stabil-
ity. Stated otherwise, the AP solution becomes unstable
if and only if there exists a fluctuation (δq,δp) such that
∫

dx dτ δS2
AP > 0.

To find a necessary and sufficient condition for the sta-
bility of the AP solution, we now consider the Fourier
spectrum of the time-dependent fluctuations δq(x, τ) and
δp(x, τ). Since time is defined on [0, T ] where T = t/L2,
these fluctuations admit the Fourier series expansion,
δq =

∑

ω eiωτfω (x) and δp =
∑

ω eiωτgω (x) with dis-
crete frequencies ωm = 2π

T m, (m ∈ Z). The linearisation
of (13) used to obtain the quadratic form (15), together
with having real valued fluctuations, lead for the Fourier
amplitudes to the set of coupled differential linear equa-
tions [35],

iωfω = ∂x (D
′∂xq0 fω +D∂xfω − σ′(∂xp0) fω − σ∂xgω)

iωgω =

(

−D′∂xxp0 −
σ′′

2
(∂xp0)

2

)

fω −D∂xxgω

− σ′∂xp0 ∂xgω (17)

which, using the equalities
∫

dτ δq2 =
∑

ω>0 |fω|
2
and

∫

dτ (∂xδp)
2

=
∑

ω>0 |∂xgω|
2
, allows to rewrite the
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fluctuation (15) of the action as
∫

dx dτ δS2
AP (x, τ) =

−
∑

ω>0 δs
2
ω, where [35]

δs2ω ≡

∫

dx
D′σ′ −Dσ′′

4D
(∂xp0)

2
|fω (x)|

2
+
σ

2
|∂xgω (x)|

2
.

(18)
The AP is stable if and only if δs2ω ≥ 0 for any solu-
tion (fω, gω) of (17) and ∀ ω > 0. To prove this state-
ment, we first assume that δs2ω ≥ 0 for any solution
(fω, gω) and ∀ω > 0. Then, necessarily

∑

ω>0 δs
2
ω ≥ 0

and
∫

dx dτ δS2
AP ≤ 0 for any solution (δq, δp) so that

the AP is stable. Conversely, if there exists a mode ω0

such that for the solution (fω0
, gω0

) of (17), δs2ω0
< 0,

then, one can choose δq = eiω0τfω0
+ e−iω0τf⋆

ω0
and

δp = eiω0τgω0
+e−iω0τg⋆ω0

so that δs2ω = 0 for any ω 6= ω0.
Therefore, this fluctuation leads to a value of the action
lower than the AP solution, though not necessarily a new
minimum.
Similar considerations applied to systems with peri-

odic boundary conditions [23, 37–39], lead to a closed
expression for the unstable frequency ω0. Unfortunately,
such an expression can hardly be obtained for open sys-
tems. But the following general conclusion seems to hold
in that case as well, namely, for finite size L and long
time limit t → ∞, the first unstable mode is expected to
be the fundamental so that the system is driven through
a continuous, second order like transition [23].
There is another important unanticipated outcome of

our approach using the cumulant generating function.
It allows to prove the yet unresolved question of the
stability of driven systems in the presence of an ap-
plied field E 6= 0, e.g. the weakly asymmetric exclu-
sion process (WASEP) [3]. Starting from the stochas-
tic equation (3), the corresponding Lagrangian rewrites

LE = (J +D (ρ) ∂xρ− Eσ (ρ))2 /2σ (ρ) instead of (6).
The new time-independent AP Hamilton-Jacobi equa-
tions,

∂x (D∂xq − Eσ)− ∂x (σ∂xp) = 0

−D∂xxp− Eσ′∂xp−
σ′

2
(∂xp)

2
= 0 (19)

with the same boundary conditions (14) are now obtained
from the modified action SE (x, τ) = (D∂xq − Eσ) ∂xp−
σ
2 (∂xp)

2
+ (p− λx) ∂τq instead of (12). To study the

stability of the AP solution, we again evaluate the vari-
ation δS2

E up to second order of the AP action under
the effect of a fluctuation δq of the density and δp of
its conjugate momentum. δS2

E is given by the diagonal

quadratic form (15) except for the replacement of (∂xp0)
2

by (∂xp0)
2
+ 2E∂xp0. Therefore, unlike the case E = 0,

we cannot a priori conclude that (16) is a sufficient condi-
tion for the stability of the AP solution. However, it hap-
pens that we indeed always have (∂xp0)

2
+ 2E∂xp0 > 0.

This is a consequence of the AP equations (19). Defining
u = ∂xp0 + E allows to rewrite the second equation of

(19) under the form [35]

∂xu

u2 − E2
= −

σ′

2D
. (20)

Next, we define h (x) ≡
∫

dx σ′(q0)
2D(q0)

for a known AP den-

sity profile q0 (x). An integral of (20) is implicitly ob-
tained in terms of h(x) as u = E coth (E h (x)). There-

fore, (∂xp0)
2
+2E∂xp0 = E2/ sinh2 (E h (x)) > 0 for any

E and(16), D′σ′ ≥ Dσ′′, remains a sufficient condition
for stability of the AP solution for E 6= 0.
An immediate application of the sufficient condition

(16) with an applied field E is to examine the validity
of the AP for the yet unsolved WASEP [43, 44]. The
WASEP dynamics is described by the dynamics of the
symmetric exclusion process [40, 41], namely D = 1 and
σ = 2ρ(1 − ρ) with a field E. It is thus clear from (16)
that AP is valid for the WASEP.
It is nevertheless worth noting that in the case of pe-

riodic boundary conditions, (16) is no longer applicable
due to the additional constraint of particle conservation.
And indeed for periodic systems, the WASEP was found
to be unstable and certain values of the current J = Q/t,
lead to travelling wave solutions [23].
Another problem where the previous approach proves

useful is the KMP model [45], whose MFT dynamics is
defined by D = 1 and σ = 2ρ2. Clearly, the KMP model
does not satisfy (16), thus being non conclusive about
its stability. However, by solving numerically the lin-
ear differential system (17), we have been able to obtain
conclusive evidence regarding the stability of the KMP
model for values of the current J [46, 47] significantly
higher than previously obtained in the literature. This
suggests that the KMP model should also be stable for
boundary driven systems, in agreement with [48].
In summary, we have presented a new quantitative ap-

proach to study the stability of boundary driven systems
out of equilibrium. This approach based on the stochas-
tic MFT, provides a necessary and sufficient condition
expressed by (17) and (18) for stability of the AP solu-
tion. It constitutes a generalisation of Le Chatelier prin-
ciple. Moreover, in that framework, we have been able
to prove the stability of the (boundary driven) WASEP
model.
Finally, we wish to give a glimpse of additional poten-

tial applications of the MFT in the realm of quantum or
wave systems. A list of relevant examples includes ther-
mal conductance in quantum chains [10], cold atoms [49],
polarised spins injected into superconductors [16] and co-
herent mesoscopic transport in a random potential [14].
For these out of equilibrium systems, the MFT allows to
obtain the full counting statistics, and other stationary
properties, e.g. density correlations [50].
For mesoscopic wave transport, a successful approach

has been proposed [15] based on a Langevin equation as
in (3) and which relates the current density jd(r) in the
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diffusive regime to the local intensity I(r) of the wave,
an equivalent of the density ρ in (3). The correspond-
ing diffusion coefficient is constant and the white noise
term is characterised by the function σ(I) ∝ I2, a re-
sult analogous to the aforementioned KMP model. The
density correlations obtained from the MFT corroborates
this relation between the KMP process [50] and transport
of classical waves through disordered media[14], as well
as the symmetric exclusion process [50] and transport of
electrons in a disordered metal [14].
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