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We report on the site-resolved observation of characteristic states of the two-dimensional repulsive
Fermi-Hubbard model, using ultracold 40K atoms in an optical lattice. By varying the tunneling,
interaction strength, and external confinement, we realize metallic, Mott-insulating, and band-
insulating states. We directly measure the local moment, which quantifies the degree of on-site
magnetization, as a function of temperature and chemical potential. Entropies per particle as low
as 0.99(6) kB indicate that nearest-neighbor antiferromagnetic correlations should be detectable
using spin-sensitive imaging.

Strongly correlated fermions present a fundamental
challenge to many-body physics, as no general method
exists to predict what phenomena will emerge [1]. Ul-
tracold gases of fermionic atoms have shown promise as
a clean, highly controllable platform for studying such
systems [2, 3]. One prominent example is the realization
of strongly coupled fermionic superfluids, enabled by the
enhanced interactions that arise near a Feshbach reso-
nance [4, 5]. Another class of strongly correlated systems
well-suited for simulation with ultracold atoms is lattice
models, in which the kinetic and interaction energies can
be set to comparable strengths [3, 6]. One such model is
the Fermi-Hubbard model, believed to capture the essen-
tial aspects of high-temperature superconductivity [7, 8].

The realization of the Fermi-Hubbard model at low en-
tropies has been a longstanding goal in ultracold atom ex-
periments. Mott-insulating behavior has been observed
in three dimensions (3D) via reduction of double occu-
pancies and compressibility [9–12]. Short-range antifer-
romagnetic correlations above the Néel temperature were
observed via Bragg scattering and dimerized lattices [13–
15]. Recently, the equation of state of the Fermi-Hubbard
model has been measured in two dimensions (2D) for
spin-1/2 and in 3D for higher spin values [16, 17]. How-
ever, these experiments relied on conventional imaging
techniques that do not allow site-resolved measurements
of microscopic quantities.

Such microscopic measurements first became possible
in bosonic systems through the development of quantum
gas microscopes with single-site resolution, and have en-
abled studies of ordering, spatial structures, and correla-
tions in the Bose-Hubbard model [18–21]. Recently, the
ability to perform single-site imaging has been extended
to the two workhorse fermionic isotopes of alkali atoms,
6Li and 40K [22–26]. While 6Li has faster lattice dy-
namics due to its smaller mass, 40K features a larger fine
structure splitting, which is beneficial for implementing
spin-dependent potentials and spin-orbit coupling.

After initial demonstrations of site-resolved imaging
of non-degenerate Fermi gases, the goal has been to ap-
ply these imaging techniques to low-entropy degenerate
gases in order to study quantum many-body phenom-

ena. Within the past few months, Pauli blocking was
directly observed in a spin-polarized gas of 6Li [26], and
the metallic, Mott-insulating and band-insulating states
of the 2D Fermi-Hubbard model have been directly de-
tected, both in 6Li [27], and, as reported in this paper, in
40K. In this work, we also demonstrate the formation of
local moments at half-filling as the temperature is low-
ered.

Our system is described by the single-band 2D Hub-
bard Hamiltonian with two spin states on a square lattice,

Ĥ = −t
∑

〈i,j〉,σ

(ĉiσ ĉ
†
jσ+h.c.)+U

∑
i

n̂i↑n̂i↓+
∑
i,σ

(Vi−µ0)n̂iσ

where ĉiσ (ĉ†iσ) is the fermion annihilation (creation) op-

erator for spin σ = {↑, ↓} on site i, niσ = ĉ†i,σ ĉi,σ is the
number operator on site i, and angle brackets indicate
summation over nearest neighbors. U and t denote the
on-site interaction energy and nearest-neighbor hopping
amplitude, respectively, while µ0 is the chemical poten-
tial and Vi is the on-site energy due to the overall trap-
ping potential. The trapping potential is approximated
by Vi = 1

2mω
2d2i a

2, where m is the atomic mass, ω is
the global trapping frequency, di is the distance in lat-
tice sites from the center of the trap, and a is the lattice
spacing.

Despite the simplicity of the Hamiltonian, this model is
theoretically intractable and has been solved only in spe-
cial cases. At weak interactions (U/8t < 1) or when the
average filling is well below unity, the system is metal-
lic. If the chemical potential is high enough to fill all
available states, the system becomes a band insulator,
with two opposite-spin atoms per site. At strong inter-
actions (U/8t� 1) and at half-filling, another insulating
state, the Mott insulator, appears when the tempera-
ture kBT � U . At temperatures well below the super-
exchange scale of 4t2/U , long-range antiferromagnetic
correlations arise. It is conjectured that d-wave supercon-
ductivity emerges upon doping a magnetically ordered
Mott insulator [7, 8]. Within the local density approx-
imation (LDA), the overall harmonic confining poten-
tial leads to a spatially varying local chemical potential,
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FIG. 1: Metallic, Mott-insulating, and band-insulating states under the quantum gas microscope. Observed
fluorescence images, showing (a) the metallic state, with µ0/h = 280(40) Hz, ω = 2π× 111(3) Hz, and U/8t̄ = 0.33(4)

with U/h = 540(60) Hz; (b) the Mott-insulating state, with µ0/h = 624(22) Hz, ω = 2π × 115(3) Hz, and
U/8t̄ = 12.3(8) with U/h = 1350(50) Hz; (c) the band-insulating state, with µ0/h = 1450(40) Hz,

ω = 2π × 181(3) Hz, and U/8t̄ = 2.6(1) with U/h = 1007(40) Hz. (d,e,f) Reconstructed detected site occupations
corresponding to (a,b,c), respectively.

and thus metallic, Mott-insulating, and band-insulating
states can coexist within the same sample [28, 29].

To realize this model, we begin by sympathetically
cooling 40K atoms with 23Na atoms in a magnetic trap.
The 40K atoms are then transferred into an optical
dipole trap, and an equal mixture of hyperfine states
|F = 9/2,mF = −9/2〉 and |9/2,−7/2〉 is created. Af-
ter evaporation and transport, we obtain a highly oblate
layer of ∼ 300 40K atoms in the x-y plane 7µm un-
derneath the imaging system. Subsequently, we ramp
up a square optical lattice in the x-y plane, with lat-
tice spacing a = 541 nm, to a depth of either 6ER,

12ER, or 18ER, where ER = ~2

2m

(
π
a

)2
. The laser beams

that create the x-y lattice also interfere to form a lat-
tice along z with 3 µm spacing, where only one layer is
populated. We use the lattice depth to tune the Hub-
bard parameters t and U , without utilizing any Feshbach
resonances. For this work, the magnetic field is set to
4.5 G, where the scattering length is 170 a0, a0 being the
Bohr radius. While the lattice is ramped up, the radial
confinement within the plane is brought to the desired
value. For imaging, the lattice depth is quickly increased
to ∼ 1000ER, while an additional lattice along the z-
direction with spacing 532 nm is also applied.

We detect the occupation on each lattice site using

Raman sideband cooling, which cools the atoms while
scattering enough photons to produce a fluorescence im-
age [22]. This imaging technique, combined with an im-
age reconstruction algorithm, allows us to determine the
occupation of a given lattice site with a measured imaging
fidelity of 95%. Because pairs of atoms residing on the
same site are lost during imaging due to light-assisted col-
lisions [30], only the parity of the occupation is detected.
Additionally, this imaging method does not distinguish
between the two spin states. The average detected occu-
pation at site i is thus given by ndet(i) = 〈n̂det(i)〉, where
n̂det(i) = n̂i↑ + n̂i↓ − 2n̂i↑n̂i↓.

We directly observe the metallic, Mott-insulating, and
band-insulating states using three configurations of lat-
tice depths and radial confinements. The three differ-
ent samples are prepared identically until the 2D lattice
ramp, where both the depth of the lattice and the radial
confinement are adjusted. In Fig. 1 we show the site-
resolved fluorescence images and the reconstructed de-
tected site occupations. In Fig. 2 we show profiles of the
corresponding radially averaged parity-projected densi-
ties ndet and their variances. The Mott-insulating and
band-insulating states are both expected to show sup-
pressed variance in ndet. In particular, the variance is
suppressed in Mott-insulating regions due to the charge
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FIG. 2: Radially averaged detected site occupation (a,b,c), variance (d,e,f), and entropy (g,h,i), with theoretical
curves. (a,d,g) Metallic state, with µ0/h = 280(40) Hz and kBT/U = 1.46(18); average entropy per particle
S/N = 1.7(1) kB . (b,e,h) Mott-insulating central region, with µ0/h = 624(22) Hz and kBT/U = 0.09(1);

S/N = 1.23(6) kB . (c,f,i) Band-insulating center and Mott-insulating annular region, with µ0/h = 1450(40) Hz and
kBT/U = 0.18(2); S/N = 0.99(6) kB . The profiles were fitted to NLCE data with U/t̄ = 3 for (a,d,g) and to HTSE

for (b,e,h). For (c,f,i), profiles were fitted to NLCE data with U/t̄ = 21, shown in solid.

gap, which is U at half-filling; in the band-insulating
regions, it is suppressed instead by Pauli blocking. In
the metallic regions the variance is not suppressed, and
in the case of half-filling it equals 0.25, since a site is
equally likely to be empty, doubly occupied, or singly
occupied by an atom of either spin state. The vari-
ance can either be directly measured, or obtained via〈
n̂2det

〉
− 〈n̂det〉2 = ndet(1 − ndet). This is due to the

operator identity n̂2iσ = n̂iσ for fermions, which implies〈
n̂2det

〉
= 〈n̂det〉, and more generally all moments of ndet

can be found from ndet itself.

The metallic state, with peak occupation 0.7 and peak
variance ∼ 0.25, is shown in Fig. 1(a,d) and 2(a,d). Here
the lattice depth is 6ER and the radial confinement is
ω = 2π×111(3) Hz. This corresponds to U/8t̄ = 0.33(4),
where t̄ =

√
txty is the mean hopping amplitude, with

tx (ty) the mean hopping amplitude along the x (y) di-
rection. In order to observe the Mott insulator, shown
in Fig. 1(b,e) and 2(b,e), we increase the interaction to
U/8t̄ = 12.3(8) by increasing the lattice depth to 18ER
and the trap confinement to ω = 2π × 115(3) Hz. The
detected site occupation flattens to 0.98(2) at the trap
center, with a corresponding variance less than 0.03. To
observe the band insulator, shown in Fig. 1(c,f) and
2(c,f), we increase the global chemical potential, by in-
creasing the trap confinement to ω = 2π × 181(3) Hz,
while reducing the interaction to U/8t̄ = 2.6(1), by low-

ering the lattice depth to 12ER. At the center the de-
tected density is depleted and the variance is suppressed,
indicating a band-insulating region with two atoms per
site. Due to the varying local chemical potential across
the trap, a surrounding Mott-insulating annular region
is also visible. The metallic regions that border the in-
sulating regions are clearly evidenced by the increased
variance.

To characterize the atomic clouds, we fit the radially
averaged parity-projected density ndet to the equation of
state of the spin-balanced Hubbard model obtained ei-
ther through numerical linked cluster expansion (NLCE)
data [31], for U/8t̄ = 0.33(4), 2.6(1), or from the high
temperature series expansion (HTSE) in t̄/kBT [32], for
U/8t̄ = 12.3(8). From these fits, we extract tempera-
tures of kBT/U = 0.55(9), 0.09(1), 0.18(2) for the three
configurations shown in Fig. 2(a,d,g), (b,e,h), and (c,f,i),
respectively. From the fits, we deduce the local entropy
per site, shown in Fig. 2(g,h,i), and the trap-averaged
entropy per particle. These curves illustrate redistribu-
tion of entropy between the different regions of the trap.
There is a local reduction of entropy in the Mott and
band-insulating regions, with a corresponding increase
of entropy in the metallic rings. Additionally, we ob-
serve that the average entropy per particle is 1.7(1)kB ,
1.23(6)kB , and 0.99(6)kB for the three configurations.

In order to explore the effects of temperature, we
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FIG. 3: Heating of Mott and band insulators. (a) Site-resolved images, (b) density profiles, and (c) variances for
temperatures kBT/U = 0.18(2), 0.22(3), 0.31(4), 0.55(8) (left to right) at fixed U/8t̄ = 2.6(1) and ω = 2π× 183(3) Hz,
with fitted curves from HTSE (solid). (d,e) Radially averaged observed filling and variance, respectively, for all four

temperature values as a function of chemical potential, calculated from the fitted global chemical potential.

heat samples at U/8t̄ = 2.6(1) and confinement of ω =
2π× 181(3) Hz by varying the hold time in the lattice up
to 3 s. In Fig. 3(a), we show the reconstructed site occu-
pations for four temperatures from kBT/U = 0.18(2) to
0.55(8). As the temperature increases, singly-occupied
sites are created in the band-insulating region as kBT
approaches µ0, while double occupancies and holes ap-
pear in the Mott-insulating region as kBT approaches U .
The radially averaged density profiles, shown in Fig. 3(b),
are fitted with HTSE to extract the temperature and
chemical potential. In Fig. 3(c), we show the measured
variance for the samples from Fig. 3(a). The variance is
suppressed in insulating regions at low temperatures, but
approaches 0.25 throughout the sample at high temper-
atures. To extract trap-independent properties, we use
the fitted value of µ0 and the trap frequency ω to deter-
mine the local chemical potential µ = µ0 − 1

2mω
2d2i a

2.
Under the LDA, the local properties are equivalent to
those of a homogeneous system at the same chemical po-
tential. Radial profiles can then be converted to profiles
with varying µ/U , as shown in Fig. 3(d) and (e) for the
site occupation and variance, respectively.

While the detected site occupation ndet does not allow
one to obtain the total density 〈n̂↓ + n̂↑〉 or the double
occupancy 〈n̂↓n̂↑〉 separately, it directly gives the local
moment

〈
m2
z

〉
=
〈
(n̂↑ − n̂↓)2

〉
= 〈n̂↑ + n̂↓ − 2n̂↑n̂↓〉 =

〈n̂det〉 [33]. In the strong coupling limit U � t and at
half-filling, as the temperature is lowered below ∼ U , the
local moment is expected to approach unity as the system
enters the Mott-insulating state. At even lower temper-
atures, near the super-exchange scale t2/U , the moment
is expected to slightly decrease, signaling reduced local-
ization as magnetic interactions become important [34].
The moment, directly given by ndet, can thus show sig-
natures of super-exchange, albeit at temperatures lower
than those accessed in the current work. In Fig. 4, we
show the local moment at half-filling (µ = U/2) as a
function of temperatures for the same parameters as in
Fig. 3. To determine the half-filling point, the detected
occupation is fitted to HTSE in the outer regions of the
sample where ndet < 0.25, from which we extract the
temperature and global chemical potential µ0. Note that
at half-filling, a measurement of the local moment also
yields the double occupancy via 〈n̂↑n̂↓〉 = (1 − 〈m2

z〉)/2.
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FIG. 4: Local moment 〈m2
z〉 as a function of

temperature at U/8t̄ = 2.6(1) for µ/U = 0.5 (red
squares) and µ/U = −0.25 (blue circles). The local
moments are extracted from 117 samples. For each

sample, the temperature and global chemical potential
are determined by fitting to HTSE in the outer regions
where ndet < 0.25. NLCE data at U/t = 21 with and
without adjustment for imaging fidelity are shown in

solid and dotted lines, respectively.

We also show the measured temperature dependence of
the moment at µ = −U/4. Note that

〈
m2
z

〉
is symmetric

about µ = U/2, a consequence of the particle-hole sym-
metry of the Fermi-Hubbard model on a bipartite lattice.
Thus the behavior of the moment versus temperature at
µ = −U/4 is representative of the metallic regions both
below and above half-filling. After correction for imaging
fidelity, the data for both values of µ are consistent with
the NLCE predictions.

In summary, we have directly observed with single-
site resolution the Mott-insulating, band-insulating, and
metallic states of the 2D Hubbard model using fermonic
40K in an optical lattice. We measure entropies as low as
0.99(6) kB per particle, indicating that short-range an-
tiferromagnetic spin correlations should be present [31,
35, 36]. The Mott insulator provides a well-controlled
initial state for further studies, such as the properties of
one-dimensional Hubbard chains and dynamics of mag-
netic polarons [8, 37]. Additionally, the presence of 23Na
in our system, combined with the recently demonstrated
creation of ground state 23Na40K molecules [38], opens
the possibility to study lattice models with long-range
and anisotropic interactions at the single-site level.
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