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The convergent close-coupling method has been used to solve the electron-hydrogen molecule
scattering problem in the fixed-nuclei approximation. Excellent agreement with experiment is found
for the grand total, elastic, electronic-excitation, and total ionization cross sections from the very
low to the very high energies. This shows that for the electronic degrees of freedom the method
provides a complete treatment of electron scattering on molecules as it does for atoms.
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Molecular hydrogen H2 is the simplest two-electron
molecule. It is the most abundant molecule in the uni-
verse; particularly in interstellar space and in the atmo-
spheres of gas giants and the outermost planets in our
solar system. It is present at the edge region of fu-
sion devices and widely used in plasma processing. A
range of applications require accurate and comprehensive
electron-collision data of molecular hydrogen in order to
interpret spectroscopic data and model astrophysical and
technological plasmas. Yet, this most fundamental few-
body problem (e-H2 scattering) has remained unsolved
by theoretical methods, and a reliable dataset of colli-
sion cross sections is significantly lacking in accuracy and
range of scattering processes.

Experimentally cross sections have been measured for
elastic scattering, vibrational and electronic excitations,
ionization and dissociative processes of the ground state.
A number of articles have given an extensive overview of
the available experimental data and provided a recom-
mended set of cross sections [1–4]. The most recent rec-
ommended data set [1] comes predominantly from exper-
imental measurements, which is problematic as theoret-
ical and experimental results vary significantly for elec-
tronic excitation cross sections. In addition experimental
uncertainties in the measurement of electronic excitation
cross sections are relatively large, generally 20-25%.

For theorists the H2 molecule offers a unique testing
ground for the development of computational techniques.
With wavefunctions known to high accuracy for this sim-
ple molecule the challenge is to treat the collision dynam-
ics accurately. A large number of theoretical methods
have been applied to calculate electron collisions with the
H2 molecule. Among the most advanced and general are
calculations based on the Schwinger variational principle
[5], Kohn variational method [6], R-matrix method [7–
11], and time-dependent close-couplig method (TDCC)
[12]. Agreement between theory and experiment for this
most fundamental of all molecules is mixed at best. To

∗electronic address: mzammit@lanl.gov

date, no theoretical method has been able to describe the
e-H2 collision processes consistently across all transitions
and incident electron energies.
There is of course a good reason for this; experience

gained over the last few decades in electron-atom scatter-
ing suggests the importance of inter-channel coupling be-
tween all reaction channels including ionization. Another
important point is the complete account of polarization
effects in the scattering calculations. Within the close-
coupling approach these can be achieved by using a near-
complete expansion of both the discrete and continuum
spectrum of the target. This is the approach adopted
in the ab initio convergent close-coupling (CCC) method
[13] and R-matrix with pseudo-states method (RMPS)
[14]. A sufficiently large expansion has to be used to ac-
curately model the coupling between all reaction channels
and avoid the pseudo-resonance problem.
This strategy is difficult to implement for molecules

due to the lack of spherical symmetry and reaction chan-
nels related to molecular vibrations and rotations. Even
within the Born-Oppenheimer approximation and per-
forming fixed-nuclei calculations the close-coupling ex-
pansion for the electronic part of the total wavefunction
was often limited to just a few low-lying states of the
H2 molecule. For example, R-matrix calculations [7, 8]
had seven states, the Kohn variational method [6] had
four states and the Schwinger multichannel (SMC) cal-
culations [5] had nine states. Such calculations are lim-
ited to low energies and their accuracy (convergence) is
difficult to estimate. The notable exception is the molec-
ular formulation of the RMPS method [11] that used a
set of pseudostates to model the coupling to the ioniza-
tion channels. The total number of states was 41 in the
biggest calculation, however, only two states, the ground
and first excited states, were represented accurately. For
other molecules the situation is similar to H2. Typically,
electron-molecule calculations include just a few states in
the close-coupling expansion and convergence studies are
not performed.
This is very different to the electron-atom scattering

field, which has undergone considerable progress over
the last two decades. Large-scale close-coupling calcula-
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tions are common, convergence studies are routinely con-
ducted and results of calculations are increasingly being
presented with uncertainty estimates.

To enable large close-coupling calculations for molecu-
lar targets the computational implementation is impor-
tant. The RMPS method as well as other techniques
(Kohn and Schwinger methods) use Slater and Gaussian
orbitals. This is helpful in dealing with the multicentre
nature of the molecular wavefunctions but at the same
time they are notorious for linear dependence problems
for large expansions. This limits the size of the calcula-
tions and the range of its applicability. The CCC method
makes use of the Sturmian (Laguerre) basis that has no
linear dependence problems and allows us to conduct
large-scale calculations. Another important difference is
the adoption of a single-centre description of the target
molecule in the CCC calculations. The advantage of the
single-centre approach is the ability to evaluate all matrix
elements in a straightforward manner. This works par-
ticularly well for the H2 molecule with the accuracy of
the wavefunctions better or comparable than in previous
calculations [5, 7, 11].

The present approach has already been applied to
positron scattering from the H2 molecule [15–17] and
electron scattering from H+

2 and its isotopologues [18, 19].
In the latter case we conducted adiabatic-nuclei calcula-
tions, which allowed us to obtain collision data for scat-
tering from the hot (vibrationally excited) target. In
both cases we have explicitly demonstrated the conver-
gence of the calculations with respect to the number of
the target states in the close-coupling expansion and the
size of the projectile partial wave expansion.

Here we apply the CCC method to the e-H2 scattering
problem. To demonstrate the accuracy of the method we
present the grand total, ionization, and elastic scatter-
ing integrated cross sections. We also present differential
cross sections (DCS) for elastic scattering and excitations
of a number of low lying states at 17.5 eV. This energy
is just above the H2 ionization threshold, where the elec-
tronic excitations and ionization processes are dominant
and their correct account is crucial.

The CCC method is formulated in a spherical coor-
dinate system where the origin is set at the midpoint
between the two nuclei and the z axis is chosen to align
along the internuclei axis R (body-frame). The body-
frame total scattering wavefunction is expanded in a
set of target states. This leads to coupled Lippmann-
Schwinger equations for the body-frame T -matrix. These
equations are solved in momentum space via a K-matrix
formulation, which enforces unitarity. In the case of
homonuclear diatomic molecules like H2 the partial wave
expansion of the projectile wavefunctions allows one to
solve the Lippmann-Schwinger equations per partial wave
of total orbital angular momentum projection M , spin S
and parity Π. Body-frame T -matrix elements are then
transformed into the lab-frame using standard techniques
and cross sections are calculated [20]. For details of the
molecular CCC method see Ref. [18].

The CCC method requires a set of target
(pseudo)states that should form a near-complete
basis. The H2 target electronic Hamiltonian HElec

T in
the Born-Oppenheimer approximation describes two
electrons in the Coulomb potential of two protons that
are fixed at a distance R and is defined as (atomic units
are used throughout the paper)

HElec
T = HElec

1 +HElec
2 + V12 + 1/R, (1)
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V12 is the electron-electron potential and 1/R is the in-
ternuclear Coulomb repulsion term. The H2 electronic
target states are characterised by their orbital angular
momentum projection m, parity π and spin s. The tar-
get Hamiltonian (1) is diagonalised for each (m,π,s) term
in a set of antisymmetrised two-electron configurations,
where one-electron orbitals are represented by Laguerre
basis functions. We designate Nl as the number of La-
guerre basis functions per orbital angular momentum l
up to lmax.
The H2 structure model needs to allow for an expan-

sion over the two electrons (nlm, n′l′m′). The struc-
ture model chosen here represents the “outer” electron
(n′l′m′) by one-electron orbitals. These one-electron or-
bitals were constructed from a Laguerre basis that had
Nl = 17 − l functions up to lmax = 3. Exponen-
tial fall-offs were chosen such that positive-energy pseu-
dostates were open just above ionization threshold and
were αl=0 = 0.76; αl=1 = 0.765; αl=2 = 0.79 and
αl=3 = 0.85. The “inner” electron is expanded by all
n ≤ 2 one-electron orbitals. These orbitals (n ≤ 2) are
constructed from short-ranged Laguerre functions that
have exponential fall-offs of αl = 1.85. However, the 1sσg

orbital (n = 1) is represented by a converged molecular-
orbital of H+

2 that was constructed from a Laguerre basis
that had Nl = 60− l, αl = 0.9 functions up to lmax = 8.
This molecular-orbital allows us to obtain an accurate
ionization threshold within a single-centre expansion.
Diagonalising the target Hamiltonian with the model

described above, N = 491 target states were constructed
and used in the scattering calculations. Of these 491
states, 92 states were in the discrete spectrum and 399
states were in the continuum. In Table I the two-electron
energies and vertical excitation energies at the equilib-
rium distance of R0 = 1.4 a0 are presented for a number
of low-lying states and compared with highly accurate
structure calculations [21–26]. The length gauge oscil-
lator strengths for the X1Σ+

g → B1Σ+
u and X1Σ+

g →

C1Πu transitions are 0.277 and 0.337, which compares
well with the accurate theoretical values 0.301 [25] and
0.351 [27], respectively. The static dipole polarisability
is α‖ = 6.427 a30 and α⊥ = 4.637 a30 for the ground state,
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which are both in good agreement with the accurate cal-
culations of Kolos and Wolniewicz [28] (α‖ = 6.380 a30
and α⊥ = 4.578 a30).

TABLE I: Two-electron energy E of electronic target states
of H2 and the vertical electronic excitation energy from the
ground state ∆E at the internuclear distance of R0 = 1.4 a0.
Comparisons are made with accurate structure calculations
[21–26].

E (a.u.) ∆E (eV)

State Present Ref. Present Ref.

X
1Σ+

g -1.162 -1.174 [21]
b
3Σ+

u -0.770 -0.784 [22] 10.67 10.62 [22]
a
3Σ+

g -0.710 -0.714 [23] 12.32 12.54 [23]
c
3Πu -0.701 -0.707 [24] 12.56 12.73 [24]
B

1Σ+
u -0.697 -0.706 [25] 12.66 12.75 [25]

EF
1Σ+

g -0.687 -0.692 [25] 12.92 13.13 [25]
C

1Πu -0.683 -0.689 [26] 13.03 13.22 [26]

To model scattering from the ground vibrational state
in the fixed-nuclei approximation more accurately, the
equilibrium distance is replaced by the mean internuclear
distance of the vibrational ground state [29]. For scat-
tering calculations we use the mean internuclear distance
of H2 Rm = 1.448 a0. It is also important to note that
in the fixed-nuclei approximation the closure-method is
effectively used to analytically sum over all vibrational
and rotational excitations.
Scattering calculations were performed from 0.1 to 300

eV. With the Rm = 1.448 a0 fixed-nuclei structure model
the ionization threshold is at 15.97 eV. For energies above
the ionization threshold the 491-state model was used.
This is the intermediate energy region where ab initio

calculations are most difficult to perform. Below the ion-
ization threshold a smaller model is sufficient. In this
energy region we use the same model described above
except the “outer” electron (n′l′m′) orbitals were con-
structed from a Laguerre basis that had Nl = 10 − l
functions up to lmax = 2. We have conducted conver-
gence studies at selected energies to verify the accuracy
of the results as a function of the size of the Laguerre
basis and projectile partial wave expansions. Detailed
convergence studies will be presented elsewhere.
The present results have been calculated using a pro-

jectile partial-wave expansion with maximum orbital an-
gular momentum Lmax = 8. The total spin S = 1/2, odd
and even parity Π and total orbital angular projection
|M | ≤ 8 channels were included. Below the ionization
threshold fewer projectile partial-waves are required. For
inelastic scattering, the orientationally averaged analytic
Born subtraction method was used to top-up the projec-
tile partial-wave expansion for integrated cross sections
[18].

The grand total cross section (GTCS) for electron scat-
tering from the ground state of the H2 molecule is pre-
sented in Fig. 1. The CCC results are compared with
the measurements of Ferch et al. [30], van Wingerden
et al. [31], Hoffman et al. [32], Deuring et al. [33], Jones
[34], Subramanian and Kumar [35], Nickel et al. [36] and
Zhou et al. [37]. As far as we are aware these are the only
ab initio results of the GTCS across the intermediate-
energy region that are in excellent agreement with all
experiments. The small experimental uncertainties sug-
gest that the CCC formalism is correct across the entire
energy range, with elastic, excitation and ionization cross
sections being taken into account accurately.
Our best estimate for the scattering length is 1.30 a0

with uncertainty of about 10%. These values are in agree-
ment with other calculations (1.24 a0[38], 1.27 a0 [39],
1.29 a0 [40], 1.30 a0 [41]). Detailed analysis of low-energy
e-H2 collisions will be conducted elsewhere.
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FIG. 1: Grand total cross section of electron scattering from
H2. CCC results are compared with the measurements of
Ferch et al. [30], van Wingerden et al. [31], Hoffman et al. [32],
Deuring et al. [33], Jones [34], Subramanian and Kumar [35],
Nickel et al. [36] and Zhou et al. [37].

In Fig. 2 total single ionization cross sections of H2

are presented. CCC H+
2 production results are compared

with the H+
2 production measurements of Krishnakumar

and Srivastava [42] and Straub et al. [43] and the total
ionization cross section (TICS) measurements of Rapp
and Englander-Golden [44], Lindsay and Mangan [2] and
calculations using the RMPS [11] and TDCC [12] meth-
ods. CCC results have been multiplied by the appro-
priate Franck-Condon [45] factor to calculate the pro-
duction of H+

2 (≈98.5% of the fixed-nuclei cross section)
and not dissociative ionization. Comparing with exper-
iment, the CCC results are in excellent agreement with
all experiments from the ionization threshold to the cross
section maximum. For high energies CCC results favour
the measurements of Krishnakumar and Srivastava [42].
The excellent agreement between the CCC results and
measurements of the GTCS and TICS indicates that the
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electron flux has been correctly distributed to the contin-
uum and discrete spectrum. Hence elastic and electronic
excitation cross sections should be accurate if the scat-
tering calculation uses accurate target states, as is the
case with the present model.
Comparing with other calculations, CCC results are in

excellent agreement with the ab initio RMPS [11] and
TDCC [12] results. The RMPS results are available from
the ionization threshold to 30 eV and TDCC results are
only available at 25, 50 and 75 eV. In the RMPS calcu-
lations there was a problem with pseudo-resonances and
an averaging procedure was used to smooth over the re-
sults. The one-electron TDCC method utilises the local-
exchange approximation and uses smaller partial wave
expansion together with a polinomial extrapolation tech-
nique. Despite these differences the agreement with CCC
is remarkable.
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FIG. 2: Ionization cross sections of electron scattering from
H2. Convergent close-coupling (CCC) results are compared
with the H+

2 production measurements of Krishnakumar and
Srivastava [42], Straub et al. [43] and the total ionization cross
section measurements of Rapp and Englander-Golden [44] and
Lindsay and Mangan [2]. RMPS [11] results end at 30 eV and
are indistinguishable from CCC results. TDCC [12] results
are available only at 25, 50 and 75 eV.

The elastic integrated cross section is presented in
Fig. 3 from 10 to 100 eV (for lower energies see Fig.
1). The fixed-nuclei CCC results are in excellent agree-
ment with the measurements of Shyn and Sharp [46],
Nishimura et al. [47], Khakoo and Trajmar [48] across
the entire energy range considered. The measurements
of Srivastava et al. [49] are consistently lower than the
CCC results and the other measurements.
To complete our presentation we consider an example

of DCS. In Fig. 4 the 17.5 eV incident electron energy
DCS are presented for elastic scattering and low-lying
electronic excitations. Starting with the top-left panel
the CCC elastic DCS are compared with the measure-
ments of Khakoo and Trajmar [48] and the 7-state R-
matrix calculations of Branchett et al. [8]. The CCC
results are in good agreement with experiment and the
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FIG. 3: Elastic cross section of electron scattering from H2.
CCC results are compared with the measurements of Shyn
and Sharp [46], Nishimura et al. [47], Khakoo and Trajmar
[48] and Srivastava et al. [49].

R-matrix results, with some variation between the two
theories at the forward angles. Measurements of the elec-
tronic excitations of H2 are exceptionally difficult due to
the overlapping electronic-vibrational manifolds in the
energy loss spectrum. Considering this difficulty the
CCC results are in excellent agreement with experiment
[50] for all transitions considered. CCC results are also
compared with the SMC calculations of da Costa et al. [5]
for excitation to the B1Σ+

u ; c
3Πu and C1Σu states.

In conclusion we have performed CCC calculations of
electron-H2 scattering over a very broad energy range
yielding excellent agreement with experiment. The CCC
formalism provides a complete solution of the electron-
molecular hydrogen scattering problem in the fixed-nuclei
approximation, irrespective of the projectile energy or
the electronic transition of interest. The fixed-nuclei
approximation is the foundation on which techniques
are built to describe vibrational and rotational excita-
tions, resonance and dissociative processes in molecules
[9, 10, 20, 51] . This will allow us to model such pro-
cesses and address some long standing problems, such
as the controversy over the vibrational excitation cross
sections for molecular hydrogen [3]. While we appreci-
ate that molecular hydrogen is the simplest molecule of
practical interest, the CCC formalism is general and can
readily be extended to other molecules where the inter-
action is dominated by one- or two-electron excitations.
We are now in a position for molecular targets where we
were for atomic targets two decades ago.

In addition to extending the CCC method to more
complicated molecules we are also extending the method
to make use of the spheroidal coordinate system. This
will allow us to study diffuse molecules like Li2 and scat-
tering from hot (vibrationally excited) molecules. All
this extensive data will be made available via the LXCat
database and should be useful in astrophysical, plasma
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FIG. 4: Elastic and electronic excitation e-H2 differential
cross sections (DCS) at 17.5 eV. CCC results are compared
with the elastic DCS measurements of Khakoo and Trajmar
[48], with the measurements of Wrkich et al. [50] for electronic
excitations of the B

1Σ+
u ; c

3Πu; a
3Σ+

g ; C
1Σu and EF
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g

states. CCC results are also compared with the R-matrix
(RM) calculations of Branchett et al. [8] and SMC calcula-
tions of da Costa et al. [5].
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