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We develop new pulse schemes to significantly speed up adiabatic state transfer protocols. Our
general strategy involves adding corrections to an initial control Hamiltonian which harness non-
adiabatic transitions. These corrections define a set of dressed states that the system follows exactly
during the state transfer. We apply this approach to STIRAP protocols and show that a suitable
choice of dressed states allows one to design fast protocols that do not require additional couplings,
while simultaneously minimizing the occupancy of the “intermediate” level.

Introduction — The general goal of moving quantum
states between two different systems finds numerous ap-
plications in quantum information processing [1, 2]. It
has generated intense theoretical interest, with numerous
approaches developed to allow high fidelity state trans-
fer that are robust against dissipation and noise. Among
the more powerful and interesting strategies are adia-
batic transfer protocols [3]. These generically involve
adiabatically evolving an eigenstate of a composite quan-
tum system, such that the state is initially localized in
the “source” system and ends up being localized in the
“target” system (see Fig. 1(a)). The adiabatic evolution
thus corresponds to a state transfer, with the initial state
of the source system “riding” the adiabatic eigenstates,
and ending up in the target system. The most famous
examples of such approaches are the STIRAP [4] and
CTAP [5] protocols, well known in atomic physics.

There are two main advantages in using transfer pro-
tocols based on adiabatic passage instead of resonant
techniques. First, adiabatic passage is inherently more
robust against pulse area/timing errors. Second, it is
useful in situations where the source and target only in-
teract via a lossy “intermediate” system, as it allows one
to use the mediated coupling without being harmed by
the noise. This is of particular relevance in optomechani-
cal state transfer schemes, where a dissipative mechanical
resonator is the intermediate system [6–9].

Despite these advantages, adiabatic schemes are nec-
essarily slow, and hence can suffer from dissipation and
noise in the target and/or source system. Therefore, sev-
eral approaches have been put forward to speed up adi-
abatic passage [10, 11]. Among the known methods, the
counterdiabatic control [12], also referred to as transi-
tionless driving [13], or its higher-order variants [14, 15]
are analytical methods that allow one to construct mod-
ification of an original Hamiltonian to compensate for
non-adiabatic errors. While in principle transitionless
driving would allow a perfect state transfer, it suffers
from two major flaws: it sometimes requires either a di-
rect coupling of the source and target systems [16–19] or
a coupling not available in the original Hamiltonian [20].
The higher-order variants overcome the first flaw of tran-
sitionless driving, but do not allow to control the popu-
lation in the intermediate system [14, 15]. A related ap-
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Figure 1. (Color online) (a) Schematic of a composite quan-
tum system where the source and the target systems (qubits in
this schematic) are coupled via some intermediate system. (b)
Schematic of the possible evolutions : (red line) perfect adia-
batic evolution, (blue line) speeding up the evolution results
in non-adiabatic errors leading to an imperfect state transfer,
(green line) by dressing the adiabatic eigenstates it is possible
to design an evolution that leads to a perfect state transfer.

proach based on constructing dynamical invariants [21]
has also been applied to STIRAP, but it lead to pulse
schemes that either need an infinite energy gap to be
perfect [22], or do not smoothly turn on/off [22, 23] and
are thus extremely challenging to implement experimen-
tally. Finally, one could use the general framework of
optimal quantum control [24], but as we will show there
is no need to use such a complex procedure.

In this Letter, rather than constructing perfect proto-
cols from scratch, we present an approach that corrects
existing efficient adiabatic protocols such that they al-
low for a perfect state transfer even in the non-adiabatic
regime. Moreover, the high flexibility of this approach
allows one to engineer and reduce the population in
the intermediate lossy level. The main idea of our ap-
proach is sketched in Fig. 1(b). We work with a basis
of dressed states whose very definition incorporates the
non-adiabatic processes. Then, by introducing additional
control fields, we can ensure these dressed states coincide
with the desired adiabatic eigenstate at the initial and fi-
nal time of the protocol. It is thus possible to do a state
transfer by having the exact dynamics follow these new
dressed states, even if the protocol is too fast to allow a
naive adiabatic evolution. We illustrate this general idea
by developing simple and effective pulses for speeding up
adiabatic state transfer in generic Λ-system setups.
General problem — We consider a general composite
quantum system, comprised of source, intermediate and
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target subsystems, respectively labeled A, B, and C. The
goal is to transfer some initial quantum state |ψ〉 (e.g. a
qubit state) from subsystem A to the target subsystem
C. Adiabatic transfer achieves this goal by constructing a
time-dependent Hamiltonian whose instantaneous eigen-
states evolve in a way that facilitates the transfer. We
start by assuming that one has constructed such a pro-
tocol. The instantaneous eigenstates (hereafter referred
to as adiabatic eigenstates) and corresponding adiabatic
energies (both indexed by k) are defined via

Ĥ(t)|ϕk(t)〉 = Ek(t)|ϕk(t)〉. (1)

A subset of eigenstates has been engineered to form a
basis of the A subsystem at initial time ti and a basis of
the target system at the final time tf . In other words the
eigenstates {|ϕmj

(t)〉}nj=0 will serve as “medium” states
and have the following properties:

|ϕmj (ti)〉 = |βj〉A ⊗ |χi〉B,C, |ϕmj (tf)〉 = |χf〉A,B ⊗ |γj〉C,
(2)

where {|βj〉}nj=0 and {|γj〉}nj=0 span the subspaces A and
C, respectively. The states |χi〉B,C and |χf〉A,B are not
necessarily equal.

It follows that if the evolution is perfectly adiabatic
(i.e. happens on a time-scale τ � 1/∆E, where ∆E is
the smallest instantaneous energy gap of the system),
the initial source state will be mapped on the final tar-
get state. However for τ . 1/∆E, the evolution will
not be perfectly adiabatic. It is convenient to move
to the adiabatic frame where the adiabatic eigenstates
are time-independent. The relevant unitary is Û(t) =∑
k |ϕk〉〈ϕk(t)|. At each instant in time, Û(t) maps the

adiabatic eigenstate |ϕk(t)〉 onto the time-independent
state |ϕk〉. In the adiabatic frame, the Hamiltonian be-
comes:

Ĥad(t) = Ĥ0(t)+Ŵ (t) =
∑
k

Ek(t)|ϕk〉〈ϕk|+i
dÛ(t)

dt
Û†(t)

(3)
The operator Ŵ (t) generically has off-diagonal matrix el-
ements connecting the various adiabatic eigenstates. The
magnitude of these matrix elements increases as τ de-
creases, leading to imperfect state transfer.
Correcting non-adiabatic errors — In order to cor-
rect the non-adiabatic errors, we look for a correction
Hamiltonian Ĥc(t) such that the modified Hamiltonian,
Ĥmod(t) = Ĥ(t)+Ĥc(t), leads to a perfect state transfer.
For this scheme to be reasonable, we require that Ĥmod(t)
has no unattainably-large coupling strengths and that
Ĥc(t) does not involve couplings that cannot be experi-
mentally implemented.

Our strategy is based on the observation that the cor-
rected dynamics only needs to evolve the system from the
correct state at ti to the correct state at tf (cf. Fig. 1(b)).
This suggests a strategy whose crucial ingredients are:

Figure 2. (Color online) (a) Comparison of the residual error
between STIRAP Eq. (19), SA-TD Eq. (20), and modified SA-
TD Eq. (21) as a function of the effective protocol duration τ
in units of τmin. (b) Comparison of the integrated population
in |B〉 over the whole protocol time between SA-TD Eq. (20)
and our new dressed state approach Eq. (21) as a function of
τ in units of τmin. (Inset) Ratio of those two quantities. The
integrated population is reduced by at least 21% and at most
26% with our new protocol. Plot of the corrected pump pulse
for SA-TD (c) and modified SA-TD (d) for different values of
τ as a function of time (t − ti) in units of the total protocol
time (tf − ti).

(I) A new basis of dressed states |ϕ̃k(t)〉 formally defined
by a time-dependent unitary transformation V (t) as

|ϕ̃k(t)〉 ≡ V̂ (t)|ϕk〉. (4)

(II) A control field Ĥc(t) that is added to the original
Hamiltonian.

The additional control Hamiltonian Ĥc(t) and dressed-
state basis (i.e. V̂ (t)) must be chosen as to satisfy the
following constraints:
(i) The dressed medium states coincide with the medium
states at time ti and tf

V̂ (tf)|ϕmj
〉 = V̂ (ti)|ϕmj

〉 = |ϕmj
〉. (5)

(ii) For all j, the evolution of |ϕ̃mj
(t)〉 is trivial in the

basis defined by V̂ (t).
If both these conditions are satisfied, then the perfect

desired state transfer will occur. A sketch of the general
idea is shown in Fig. 1(b). Condition (ii) is better de-
fined by moving in the frame defined by V̂ in which the
Hamiltonian takes the form

Ĥnew(t) = V̂ Ĥad(t)V̂ † + V̂ ÛĤc(t)Û
†V̂ † + i

dV̂

dt
V̂ †. (6)

We have omitted the explicit time dependence of Û and
V̂ for clarity. Condition (ii) then becomes

〈ϕ̃mj
|Ĥnew|ϕ̃k〉 = 0 for 1 ≤ k ≤ n , k 6= mj . (7)
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In other words, Ĥc(t) has to be designed such that it
cancels the unwanted off-diagonal elements in Ĥnew(t).

To summarize, the general method involves picking an
appropriate pair of operators (V̂ (t), Ĥc(t)): the unitary
V̂ (t) selects a (time-dependent) basis of dressed states,
while the additional control Hamiltonian Ĥc(t) ensures
the correct dynamics. The net result is that the desired
state transfer dynamics occurs perfectly despite not being
in the adiabatic limit.

Transitionless driving [12–14] is a special case of this
approach and is retrieved by choosing V̂ (t) = 1̂ and
Ĥc = −Û†Ŵ Û . The alternative schemes described
in [14, 15] are also recovered from our approach, by choos-
ing the dressed states as the superadiabatic states [25–
27] (instantaneous eigenstates of Ĥad) or its higher order
counterparts. In what follows, we use our method to de-
rive truly new protocols.
Application: STIRAP — We apply our general approach
to the problem of Stimulated Raman Adiabatic Passage
(STIRAP) [3, 4] in a three-level Λ-type system. For con-
creteness, each of the subsystems A, B and C are qubits
such that A and C only interact with B via the so-called
pump and Stokes pulses (Ωp/s respectively). The Hamil-
tonian reads:

Ĥ(t) = Ωp(t)|B〉〈A|+ Ωs(t)|B〉〈C|+ h.c. (8)

with |A〉 = |100〉, |B〉 = |010〉, |C〉 = |001〉. The pulses
are parameterized by the frequency Ω(t) and the angle
θ(t)

Ωp(t) = −Ω(t) sin θ(t) , Ωs(t) = Ω(t) cos θ(t). (9)

The adiabatic eigenstates (see EPAPS [28]) consist of two
“bright” states |ϕ±(t)〉 with energy E±(t) = ±Ω(t), a
“dark” state |ϕD(t)〉 with ED(t) = 0, and |ϕ0(t)〉 = |000〉
with E0(t) = 0. A general adiabatic state transfer from
qubit A to C can be performed using the “medium” states

|ϕD(t)〉 = cos θ(t)|A〉+ sin θ(t)|C〉 (10)

and |ϕ0(t)〉, which operates a state transfer from |A〉 to
|C〉 by using the counter intuitive pulse sequence θ(ti) =
0 and θ(tf) = π/2. As mentioned before, as the protocol
time is reduced, the perfect adiabatic transfer will be
more and more corrupted. This is described by going in
the adiabatic basis where the Hamiltonian (8) becomes

Ĥad(t) = Ω(t)M̂z + θ̇(t)M̂y, (11)

where M̂z = |ϕ+〉〈ϕ+| − |ϕ−〉〈ϕ−|, M̂x =
(|ϕ−〉 − |ϕ+〉)〈ϕD|/

√
2 + h.c., and M̂y =

i (|ϕ+〉+ |ϕ−〉)〈ϕD|/
√

2 + h.c. are spin 1 operators,
obeying the commutation relation [Mp,Mq] = iεpqrMr.
The second term of the adiabatic Hamiltonian Eq. (11)
corresponds to the non-adiabatic couplings coming from
the inertial term in Eq. (3).

Thanks to the analogy between the adiabatic Hamilto-
nian (11) and a spin 1 in an magnetic field, ingredient (I)
(i.e. the construction of dressed states) of our approach
can be parametrized as a rotation of the spin with Euler
angles ξ(t), µ(t), and η(t),

V̂g = exp
[
iη(t)M̂z

]
exp

[
iµ(t)M̂x

]
exp

[
iξ(t)M̂z

]
. (12)

In order to satisfy condition (i), the angle µ(t) has to
satisfy µ(ti) = µ(tf) = 0(2π) and the two other angles can
have arbitrary values. It can be shown that by choosing
the ingredient (II) of our method to have the general form

Ĥc(t) = Û†ad(t)
(
gx(t)M̂x + gz(t)M̂z

)
Ûad(t), (13)

we find a control Hamiltonian Ĥc that does not directly
couple the states |A〉 and |C〉. The corrected protocol will
consist in a simple modification of the original STIRAP
angle and amplitude,

θ(t)→ θ̃(t) = θ(t)− arctan

(
gx(t)

Ω(t) + gz(t)

)
, (14)

Ω(t)→ Ω̃(t) =

√(
Ω(t) + gz(t)

)2
+ g2x(t). (15)

Moreover, in order to satisfy Eq. (7), the control param-
eters have to be chosen as

gx(t) =
µ̇

cos ξ
− θ̇ tan ξ, (16)

gz(t) = −Ω + ξ̇ +
µ̇ sin ξ − θ̇
tanµ cos ξ

, (17)

and are independent of η(t). Within our framework, it
can be shown that the population in the intermediate
level |B〉 is given by

|〈ψ(t)|B〉|2 = sin2 µ(t) cos2 ξ(t). (18)

From now on, in order to keep the discussion simple, we
focus on the ξ(t) = 0 case.
Application to Vitanov-style pulses — We apply these
dressed-state protocols to the optimal STIRAP pulses
discussed by Vitanov et al. in Ref. [29] and defined by

Ω(t) = Ω0 , θ(t) =
π

2

1

1 + e−t/τ
, (19)

where the timescale τ controls the effective duration of
the protocol. The simplest nontrivial choice of dressed-
states basis is the superadiabatic basis, for which

µ = − arctan

(
θ̇(t)

Ω(t)

)
, gx(t) = µ̇, gz(t) = 0. (20)

This choice will be referred to as SA-TD (superadia-
batic transitionless driving). With this choice the only
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Figure 3. (Color online) (a) Comparison of the residual error
for STIRAP with Gaussian densities Eq. (23) and modified
SA-TD Eq. (24) as a function of the effective protocol du-
ration τ in units of τmin. The residual error is reduced by
several orders of magnitude in the non-adiabatic regime. (b)
Corrected pump pulse for different values of τ as a function
of time (t− ti) in units of the total protocol time (tf − ti).

way to reduce the population in the intermediate level
(cf. Eq. (18)) is to decrease the magnitude of θ̇(t), and
hence slow down the protocol (i.e. longer τ). Interest-
ingly, SA-TD represents a non-perturbative version of
the DRAG approach to leakage errors [30, 31] applied to
this problem (see EPAPS [28]).

Our approach allows one to construct alternatives to
SA-TD (based on alternate dressed states) which reduce
the intermediate-level occupancy. This can be extremely
beneficial in systems where the intermediate state is lossy,
but where adiabatic evolution is impossible, as the proto-
col must be fast to avoid dissipation of the source and/or
target system, or because of slow drifts of system pa-
rameters. A concrete example with all these features
is optomechanical state transfer [6–9]. By generalizing
Eq. (20) to

µ = − arctan

(
θ̇(t)

f(t)Ω(t)

)
, gx(t) = µ̇,

gz(t) = −Ω− θ̇(t)

tanµ

(21)

we can chose the auxiliary function f(t) to reduce µ (and
hence the amount of state dressing) to avoid unneces-
sary B-state population. Here, we choose to consider
the simple class of functions f(t) = 1 + A exp(−t2/T 2)
(f(t) ≥ 1 ∀t) with A > 0 and T > 0 two parameters that
can be optimized for each τ to minimize the population
in B. As we show below, this intuitive and physically
motivated choice allows for a sizeable reduction of the
occupancy of the intermediate level without having to
rely on more complex methods (e.g. control theory).

To compare protocols, we look at the relevant case
where fidelity is limited both by a non-zero τ in Eq. (19)
and by the protocol starting and ending at a finite-
time. In theory, the protocol should start at ti =
−∞ and end at tf = +∞ in order to achieve the
requirement θ(ti) = 0, θ(tf) = π/2, and µ(ti) =
µ(tf) = 0(2π). To simulate pulses with a finite du-

ration, we have chosen tf = −ti = 15τ such that
Ωp(ti) = Ωs(tf) < 10−6Ω0. With our choices of cor-
rection, the shorter the protocol time, the bigger the
amplitude Ω̃(t, τ). We consider the case where each
corrected pulse cannot exceed its original maximal am-

plitude Ω0 (maxt

[
Ω̃(t, τ) sin θ̃(t, τ), Ω̃(t, τ) cos θ̃(t, τ)

]
≤

Ω0 , ∀t). This constraint implies that we can only cor-
rect protocols with an effective protocol time τ > τmin '
1/2.63Ω0.

ε = 1− F = 1− |C〈ψ(tf)|ψ(ti)〉A|2 . (22)

Since we are interested in a qubit state transfer and |000〉
has a trivial dynamics, only the transfer of state |A〉 to
|C〉 gives rise to errors. Thus, we plot the fidelity for
transferring the |A〉 state only, which sets an upper bound
for the error when transferring a superposition of an ar-
bitrary qubit state (see EPAPS [28]). In Fig. 2(a), we
plot the residual error ε as a function of τ for SA-TD
Eq. (20) and modified SA-TD Eq. (21) with optimized
parameters. Both choices reduce the residual error by
the same amount and lead to several orders of magni-
tude reduction as compared to the protocol defined by
Eq. (19). The oscillatory behavior is a direct consequence
of having finite-time pulses (see EPAPS [28]).

To illustrate the additional advantage of our choice of
correction, we consider the time integral over the full pro-
tocol duration of the population in |B〉. In Fig. 2(b),
we plot this quantity for both SA-TD and modified
SA-TD: the integrated population is reduced between
≈ 21−25.5% with the modified SA-TD Eq. (21) as com-
pared to SA-TD Eq. (20). In Fig. 2(c) and (d), we plot
the corrected pump pulse for SA-TD and modified SA-
TD for different values of τ . The Stokes pulse is the
symmetric of the pump pulse with respect to (tf − ti)/2.
The SA-TD pulses rapidly converge to the Vitanov style
pulses Eq. (19) when τ increases, while the modified SA-
TD pulses converge more slowly. This is due to the fact
that the modified SA-TD pulses have been designed not
only to reduce the residual error, but also to reduce the
population in the mechanics which slowly converges to 0
as τ →∞.
Application to Gaussian pulses — An additional advan-
tage of our approach is that it allows to correct proto-
cols for which the correction Eq. (20) does not work. In
particular, the most common approach to STIRAP uses
Gaussian pulses [3, 4] Ωp(t) = Ω0 exp[−(t − t0/2)2/τ2]
and Ωs(t) = Ω0 exp[−(t + t0/2)2/τ2] with t0 the delay
time between the two pulses. Using the parametrization
defined in Eq. (9), we have

θ(t) = arctan
[
exp(2tt0/τ

2)
]

Ω(t) = Ω0 exp

(
− t

2 + t20/4

τ2

)√
2 cosh (tt0/τ2).

(23)

For this particular case, we cannot use the SA-TD pre-
scription to construct a control Hamiltonian as the condi-
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tion µ(ti) = µ(tf) = 0(2π) is not satisfied (for this choice
of pulse θ̇(t)/Ω(t) → +∞ as t → ±∞). However, our
dressed state approach allows to find a control Hamilto-
nian using Eq. (17) (ξ = 0) and

µ(t) = − arctan

(
θ̇(t)

g(t)/τ + Ω(t)

)
. (24)

Here, g(t)/τ is used to regularize µ(t): it has to be cho-
sen such that it tends to zero at ti and tf slower than
θ̇. In Fig. 3, we have plotted the residual error for STI-
RAP with Gaussian densities (Eq. (23)) and for mod-
ified SA-TD (Eq. (24)). We have chosen t0 = 6/5τ
and g(t) = A/ cosh ζt with A = 1/40 and ζ = 9/10τ ,
which gives τmin ≈ 1/1.27Ω0. Under the condition
Ωp(ti) = Ωs(tf) < 10−6Ω0, we have tf = −ti = 6τ . This
new pulse scheme leads to a reduction of the residual
error by several orders of magnitude (see Fig. 3(a)) in
the non-adiabatic regime while SA-TD Eq. (20) fails. In
Fig. 3 (b), we plot the corrected pump pulse for different
values of τ . The Stokes pulse is the symmetric of the
pump pulse with respect to (Ωp, t) = (0, (tf − ti)/2).
Conclusion — We have developed a general method to
achieve a perfect state transfer between two quantum sys-
tems coupled via an intermediate lossy system. In con-
trast to previous schemes, our approach is both physically
transparent and extremely flexible, allowing application
to a wide variety of realistic experimental situations.

In future work, it could be interesting to investigate
the resilience of the generated pulse sequences with re-
spect to experimental imperfections of the system and
of the control fields as in Refs. [32, 33]. It would also
be interesting to investigate the implementation of our
method in more complicated systems, where analytical
diagonalization is not possible. In particular one could
study perturbative variants of our approach as well as
numerical diagonalization allowing to look for TD and
higher order variants corrections [13–15].
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