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Many systems are naturally represented by a multilayer network in which edges exist in multiple layers that
encode different, but potentially related, types of interactions, and it is important to understand limitations on the
detectability of community structure in these networks. Using random matrix theory, we analyze detectability
limitations for multilayer (specifically, multiplex) stochastic block models (SBMs) in which L layers are derived
from a common SBM. We study the effect of layer aggregation on detectability for several aggregation methods,
including summation of the layers’ adjacency matrices for which we show the detectability limit vanishes as
O(L−1/2) with increasing number of layers, L. Importantly, we find a similar scaling behavior when the
summation is thresholded at an optimal value, providing insight into the common—but not well understood—
practice of thresholding pairwise-interaction data to obtain sparse network representations.

PACS numbers: 89.75.Hc, 02.70.Hm, 64.60.aq

The analysis of complex networks [1] has far-reaching ap-
plications ranging from social systems [2] to the brain [3].
Often, the system is a multilayer network (see reviews [4, 5]),
whereby network layers encode different classes of interac-
tions, such as categorical social ties [6], types of critical in-
frastructure [7], or a network at different instances in time [8].
In principle, the multilayer framework offers a more compre-
hensive representation of a data set or system, as compared to
an aggregation of layers that produces a simplified model but
does so at the cost of information loss. For example, neglect-
ing the layered structure can lead to severe and unintended
consequences regarding structure [9] and dynamics [10–12],
which can fundamentally differ between single-layer and mul-
tilayer networks [13, 14].

However, layer aggregation also implements an informa-
tion processing that can be beneficial. Network layers are
often correlated with one another and can encode redundant
information [15]. In some cases a multilayer representation
is an over-modeling, which can negatively impact the com-
putational and memory requirements for storage and analysis.
In such situations, it is beneficial to seek a more concise rep-
resentation in which certain layers are aggregated [16, 17].
Identifying sets of repetitive layers amounts to a clustering
problem, and it is closely related to the topic of clustering net-
works in an ensemble [17, 18]. Much remains to be studied
regarding when layer aggregation is appropriate and how it
should be implemented.

We study the effect of layer aggregation on community
structure in multilayer networks with layers drawn from a
common stochastic block model (SBM). SBMs are a paradig-
matic model [19] for complex structure in networks and are
particularly useful for studying limitations on detectability—
that is, if the community structure is too weak, it cannot be
found upon inspection of the network [20–25]. Recently, the
detectability limit has been explored for networks with degree
heterogeneity [26] and hierarchical structure [27, 28], for tem-
poral networks [29], and for the detection of communities us-

ing multi-resolution methods [30]. Despite growing interest in
multilayer SBMs [31–35] (which we note, focus on multiplex
networks in which nodes are identical in every layer and edges
are restricted to connecting nodes in the same layer [4, 5]), the
effect of layer aggregation on detectability limitations has yet
to be explored outside the infinite layer limit [35].

To this end, we study detectability limitations for multilayer
SBMs with layers following a single SBM and find layer ag-
gregation to significantly influence detectability. When the
aggregate network corresponds to the summation of the adja-
cency matrices encoding the network layers, aggregation al-
ways improves detectability. The detectability limit vanishes
with increasing number of layers, L, and decays asO(L−1/2).
Because the summation of L adjacency matrices can often
yield a weighted and dense network—which increases the
complexity of community detection [36]—we also study bi-
nary adjacency matrices obtained by thresholding this sum-
mation at some value L̃. We find that the detectability limit
is very sensitive to the choice of L̃ and that there exist thresh-
olds (e.g., mean edge probability for homogeneous commu-
nities) that are optimal in that the detectability limit also de-
cays as O(L−1/2). These results provide insight into the use
of thresholding pairwise-interaction data to construct sparse
networks—a practice that is commonplace but for which the
effects are not well understood.

We begin by describing the multilayer SBM. We consider
N nodes divided into K communities, and we denote by
ci ∈ {1, . . . ,K} the community index for each node i ∈
{1, . . . , N}. The multiplex network is defined by L layers en-
coded by a set of adjacency matrices, {A(l)}, where A(l)

ij = 1

if (i, j) is an edge in layer l and A(l)
ij = 0 otherwise. The

probability of edge (i, j) in layer l is given by Πcicj ∈ [0, 1],
where Π is a K ×K matrix.

The detectability of community structure relates to the abil-
ity to recover the nodes’ community labels {ci}. To connect
with previous research [21, 23–25], we focus on the case of
K = 2 communities of equal size with edge probabilities
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Π11 = Π22 = pin and Π12 = Π21 = pout. Below, we will si-
multaneously refer to these respective probabilities as pin,out.
We assume pin ≥ pout to study “assortative” communities
in which there is a prevalence of edges between nodes in the
same community [37].

It has been shown for the large network N → ∞ limit that
there exists a detectability limit characterized [23, 24] by the
solution curve (∆∗, ρ) to

N∆ =
√

4Nρ, (1)

where ∆ = pin−pout is the difference in probability and ρ =
(pin + pout)/2 is the mean edge probability. For given ρ, the
communities are detectable only when the presence of com-
munity structure is sufficiently strong, i.e., ∆ > ∆∗. Equa-
tion (1) describes a phase transition that has been obtained via
complementary analyses—Bayesian inference [23] and ran-
dom matrix theory [24]—and represents a critical point that is
independent of the community detection method (see [23] and
footnote 11 in [24]). We further note that Eq. (1) was derived
for sparse networks [i.e., constant ρN so that ρ = O(N−1)].
Here, we must consider the full range of densities, ρ ∈ [0, 1],
to allow for aggregated networks that are potentially dense
[i.e., ρ = O(1) as N →∞].

In this Letter, we study the behavior of ∆∗ for two methods
of aggregating layers. We define the summation network cor-
responding to the weighted adjacency matrix A =

∑
l A

(l)

as well as a family of thresholded networks with unweighted
adjacency matrices {Â(L̃)} that are obtained by applying a
threshold L̃ ∈ {1, . . . , L} to the entries of A. Specifically,

we define Â(L̃)
ij = 1 if Aij ≥ L̃ and Â(L̃)

ij = 0 otherwise. Of
particular interest are the limiting cases L̃ = L and L̃ = 1,
which respectively correspond to applying logical AND and
OR operations to the original multiplex data {A(l)

ij } for fixed
(i, j). We refer to these thresholded networks as the AND and
OR networks, respectively.

We study the detectability limit for the layer-aggregated
networks using random matrix theory [38, 39]. This approach
is particularly suited for detectability analysis since commu-
nity labels {ci} can be identified using spectral partitioning
and phase transitions [24, 27, 28] in detectability correspond
to the disappearance of gaps between isolated eigenvalues
(whose corresponding eigenvectors reflect community struc-
ture) and bulk eigenvalues [which arise due to stochasticity
and whose N → ∞ limiting distribution is given by a spec-
tral density P (λ)]. We develop theory based on the modular-
ity matrix Bij = Aij − ρL [40]. Note that we do not use
the configuration model as the null model. Instead, since all
nodes are identical under the SBM, the appropriate null model
is Erdős-Rényi with repeated edges allowed in which so that
the expected number of edges between any pair of nodes is
ρL.

We first study ∆∗ for the summation network. We ana-
lyze the distribution of real eigenvalues {λi} of B (in de-
scending order) using methodology developed in [24, 38]; we

extend this work to networks that are multiplex and possi-
bly dense. We outline our results here and provide further
details in the Supplemental Material. We begin by describ-
ing the statistical properties of entries {Aij}, which are in-
dependent random variables following a binomial distribution
P
(
Aij = a

)
= f(a;L,Πcicj ), where

f(a;L, p) =
(

L
a

)
pa(1− p)L−a (2)

has mean Lp and variance Lp(1 − p). Provided that there
is sufficiently large variance in the edge probabilities (i.e.,
NLρ(1 − ρ) � 1), we find that the limiting N → ∞ dis-
tribution of bulk eigenvalues for B is given by a semi-circle
distribution,

P (λ) =

√
λ2

2 − λ2

πλ2
2/2

(3)

for |λ| < λ2 and P (λ) = 0 otherwise, where

λ2 =
√

4NL[ρ(1− ρ)−∆2/4] (4)

is the upper bound on the support of this spectral density and
is the limitingN →∞ value of the second-largest eigenvalue.
The largest eigenvalue of B in theN →∞ limit is an isolated
eigenvalue

λ1 = NL∆/2 + 2[ρ(1− ρ)−∆2/4]/∆. (5)

As we shall show, ∆∗ → 0 as N increases, and therefore
the ∆2/4 terms in Eq. (4) and (5) are negligible near the
detectability limit (i.e., ∆ ≈ ∆∗). The eigenvector v cor-
responding to λ1 gives the spectral bipartition—the inferred
community label of node i is determined by the sign of vi—
and provided that the largest eigenvalue corresponds to this
isolated eigenvalue, λ1, the eigenvector entries {vi} are cor-
related with the community labels {ci}. To obtain the de-
tectability limit, we set λ1 = λ2, neglect the ∆2/4 terms and
simplify, yielding a modified detectability equation

NL∆ =
√

4NLρ(1− ρ). (6)

Note that Eq. (6) recovers Eq. (1) whenL = 1 and ρ→ 0 [i.e.,
for sparse networks, ρ(1−ρ) ≈ ρ]. Defining p∗in = ρ+∆∗/2
and p∗out = ρ − ∆∗/2, we find for fixed ρ and increasing
N and/or L that p∗in,out → ρ and ∆∗ → 0, decaying as
O(1/

√
NL).

We now study ∆∗ for the thresholded networks, which cor-
respond to single-layer SBMs in which the community labels
{cj} are identical to those of the multilayer SBM, but there
are new effective block edge probabilities

Π̂(L̃)
nm = 1− F (L̃− 1;L,Πnm), (7)

where F (a;L, p) is the cumulative distribution function for
the binomial distribution f(a;L, p). The effective probabil-
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ities for the AND and OR networks are Π̂
(L)
nm = (Πnm)L

and Π̂
(1)
nm = 1 − (1 − Πnm)L, respectively. For the two-

community SBM, the effective probabilities are p̂
(L̃)
in,out =

1 − F (L̃ − 1;L, pin,out), ∆̂(L̃) = p̂
(L̃)
in − p̂

(L̃)
out, and ρ̂(L̃) =

(p̂
(L̃)
in + p̂

(L̃)
out)/2. The modularity matrices for the thresh-

olded networks become B̂
(L̃)
ij = Â

(L̃)
ij − ρ̂(L̃). We iden-

tify the detectability limit by substituting ∆̂(L̃) 7→ ∆ and
ρ̂(L̃) 7→ ρ into Eq. (6) (with L = 1) and numerically find-
ing a solution (∆∗, ρ) using a root-finding algorithm. Note
that the detectability equation holds for the effective probabil-

ities,N∆̂(L̃) =
√

4Nρ̂(L̃)(1− ρ̂(L̃)), and not the single-layer

probabilities, N∆ 6=
√

4Nρ(1− ρ).

In Figs. 1(a)–(b), we show ∆∗ versus the mean edge prob-
ability ρ for the different aggregation methods: (i) a single
layer (red dot-dashed curves), which is identical in panels (a)
and (b); (ii) the summation network (blue dashed curves), for
which the curve in (b) corresponds to the curve in panel (a)
rescaled by a factor of 1/2; and (iii) thresholded networks
(solid curves), which shift left-to-right with increasing L̃. This
is evident by comparing ∆∗ for the AND (L̃ = L, gold cir-
cles) and OR (L̃ = 1, cyan squares) networks. We find when
ρ is large that the AND (OR) network has a relatively small
(large) detectability limit; in contrast, when ρ is small the
AND (OR) network has a relatively large (small) detectability
limit. In other words, aggregating layers using the AND (OR)
operation is beneficial for dense (sparse) networks.

It is interesting to ask if there are choices of ρ and L̃ for
which the detectability limit vanishes as O(L−1/2) with in-
creasing L—that is, a behavior similar to that of the summa-
tion network. To this end, we study the threshold L̃ = dρLe,
which we numerically observe to be the best L̃ for most val-
ues of ρ. This choice is also convenient as it only requires
knowledge of the mean edge probability, ρ, which is easy to
obtain in practice. In Fig. 1(c), we plot ∆∗ versus ρ for L = 4
and L̃ = dρLe (orange triangles), which lies along the solu-
tion curves for L̃ ∈ {1, . . . , L} (solid curves). In Fig. 1(d),
we plot ∆∗ for threshold L̃ = dρLe with L = 4 (orange trian-
gles) and L = 64 (green crosses). These curves align due to
the rescaling of the vertical axis by

√
NL. In fact, we find in

the large L limit that these solutions ∆∗ collapse onto a single
curve (∆∗(asym), ρ) that solves

NL∆ =
√

2πNLρ(1− ρ), (8)

which we plot by the black line in Fig. 1(d). To
obtain Eq. (8), we use the central limit theo-
rem [41] to approximate p̂

(dρLe)
in,out ≈ p̂

(asym)
in,out =

1 − G (Lρ;Lpin,out, Lpin,out (1− pin,out)), where
G
(
p;µ, σ2

)
= 1

2 + 1
2 erf

(
(p− µ)/σ

√
2
)

is the value of the cu-
mulative distribution function of the normal distribution with
mean µ and variance σ2 evaluated at p. In particular, we ap-
proximate ∆̂(dρLe) ≈ ∆̂(asym) = erf

(
∆
√
L/
√

8ρ(1− ρ)
)
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FIG. 1. (Color online) Layer aggregation enhances the detectability
of community structure. (a)–(b) We plot the detectability limit ∆∗

versus mean edge probability ρ for a single network layer (red dot-
dashed curves), the aggregate network obtained by summation (blue
dashed curves), and aggregate networks obtained by thresholding
this summation at L̃ ∈ {1, 2, 3, 4} (solid curves). Gold circles and
cyan squares highlight L̃ = L and L̃ = 1, which we refer to as AND
and OR networks, respectively. Results are shown for N = 104

nodes with (a)L = 4 and (b) L = 16 layers. (c) ForL = 4, we show
∆∗ versus ρ for the optimal threshold L̃ = dρLe (orange triangles),
which lies on the solution curves for L̃ ∈ {1, . . . , L} (solid curves).
(d) We show ∆∗ for L̃ = dρLe with L ∈ {4, 16}. These piecewise-
continuous solutions collapse onto the asymptotic solution ∆∗(asym)

(black curve) as L increases. In panels (c)–(d), we additionally plot
∆∗ for the summation network (blue dashed curves).

and ρ̂(dρLe) ≈ ρ̂(asym) = 1/2. Equation (8) is recovered
after substituting ∆̂(asym) 7→ ∆ and ρ̂(asym) 7→ ρ into
Eq. (6) with L = 1 and using the first-order expansion
erf−1(N−1/2) ≈

√
π/4N . Importantly, Eq. (8) implies that

∆∗ decays as O(1/
√
NL) for thresholded networks with

L̃ = dρLe.
In Fig. 2, we illustrate the limiting L → ∞ behavior for

thresholded networks with L̃ = dρLe. In panels (a)–(b), we
plot p̂(dρLe)

in (blue triangles) and p̂(dρLe)
out (red circles) versus ρ

for ∆ = 0.1 with (a) L = 4 and (b) L = 64. We also plot
the effective probabilities p̂(L̃)

in (solid curves) and p̂(L̃)
out (dashed

curves) for the AND (gold curves) and OR (cyan curves) net-
works. In panel (b), we additionally plot the limiting ef-
fective probabilities p̂(asym)

in (blue solid curve) and p̂
(asym)
out

(red dashed curve). Comparing panel (b) to (a), one can ob-
serve that as L increases, the piecewise-continuous solutions
p̂

(dρLe)
in,out separate and align with the respective asymptotic so-

lutions p̂(asym)
in,out .

In Figs. 2(c)–(f), we illustrate adjacency matrices Â(dρLe)

of thresholded networks with ρ = 0.3 and ∆ = 0.1 for vari-
ous L. We note that the community structure is undetectable
for L = 1 since ∆∗ = 0.1095, whereas it is detectable (and
visually apparent) for L = 128. Comparing (c)–(f) illus-
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FIG. 2. (Color online) Effective edge probabilities for layer aggre-
gation at an optimal threshold. (a)–(b) The summation and thresh-
olding at L̃ = dρLe of L adjacency matrices yields a new SBM with
effective edge probabilities p̂(dρLe)in (blue triangles) and p̂(dρLe)out (red
circles). Results are for ∆ = 0.1 (i.e., pin,out = ρ ± 0.05) with
(a) L = 4 and (b) L = 64 layers. We also show effective proba-
bilities for the AND (gold curves) and OR (cyan curves) networks.
(Solid and dashed curves give p̂(L̃)

in and p̂(L̃)
out, respectively.) Note for

the larger L value in (b) that p̂(dρLe)in and p̂(dρLe)out have separated and
aligned with the asymptotic probabilities p̂(asym)

in (blue solid curve)
and p̂(asym)

out (red dashed curve), respectively. (c)–(f) Adjacency ma-
trices of thresholded networks with ρ = 0.3, ∆ = 0.1, L̃ = dρLe
and various L.

trates the L → ∞ limiting behavior of Â(dρLe). Specifi-
cally, application of Hoeffding’s inequality [42] (and using
that pin,out − ρ = ±∆/2) yields p(dρLe)

in ≥ 1 − e−L∆2/2

and p(dρLe)
out ≤ e−L∆2/2, which implies that p̂(dρLe)

in → 1 and
p̂

(dρLe)
out → 0 with increasing L so that Â(dρLe)

ij → δcicj , where
δnm is the Kronecker delta function.

We conclude by studying the dominant eigenvector v of the
appropriate modularity matrix, which undergoes a phase tran-
sition at ∆∗: {vi} and the community labels {ci} are uncor-
related for ∆ < ∆∗, whereas they are correlated for ∆ > ∆∗.
Using methodology developed in [38], we find that the entries
{vi} within a community are Gaussian distributed with mean

|〈vi〉| =
√

1

N

√
1− λ2

2

(NL∆)2
, (9)

which we use as an order parameter to observe the phase
transition. In Fig. 3, we depict observed (symbols) and pre-
dicted values given by Eq. (9) (curves) of |〈vi〉| for a sin-
gle layer (×-symbols), the summation network (+-symbols)
and thresholded networks (open symbols). We focus on a
range of ∆ that contains ∆∗ for most aggregation methods.
Note for the thresholded networks that there is no simple or-
dering to ∆∗, which can be deduced by examining Fig. 1(a)
for ρ ∈ {0.02, 0.6}. Finally, we note that finite-size effects
amplify disagreement between observed and predicted values
near the phase transitions.

In this Letter, we studied limitations on community detec-
tion for multilayer networks with layers drawn from a com-
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FIG. 3. (Color online) Phase transition at ∆∗ for the dominant
eigenvector v of the modularity matrix. We show observed (symbols)
and predicted values given by Eq. (9) (curves) for the mean eigenvec-
tor entry |〈vi〉| within a community for N = 104 and L = 4.

mon SBM. As an illustrative model, we analyzed the effect of
layer aggregation on the detectability limit ∆∗ for two equal-
sized communities. When layers are aggregated by summa-
tion, we analytically showed that ∆∗ vanishes as O(L−1/2).
When layers are aggregated by thresholding this summation,
∆∗ depends on the choice of threshold, L̃. For L̃ = dρLe, we
analytically found ∆∗ to also vanish as O(L−1/2). We note
that our analysis also describes layer aggregation by taking the
mean, L−1

∑
l A

(l), since the multiplication of a matrix by a
constant simply scales the eigenvalues by that constant. Thus,
our results are in excellent agreement with previous work [35]
that proved the consistency of spectral clustering via the mean
adjacency matrix.

Finally, it is commonplace to threshold pairwise-interaction
data to construct network representations that are sparse and
unweighted and can be studied at a lower computational cost.
Our research provides insight into this common—yet not well
understood—practice. It would be interesting to extend this
work to allow the SBMs of layers to be correlated [25] (that
is, rather than identical) or organized into “strata” [17] (i.e.,
layers within a single stratum are similar, but they differ across
strata). We are currently extending our analysis to hierarchical
SBMs [27].
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