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The Kibble-Zurek (KZ) hypothesis identifies the relevant time scales in out-of-equilibrium dynam-
ics of critical systems employing concepts valid at equilibrium: It predicts the scaling of the defect
formation immediately after quenches across classical and quantum phase transitions as a function
of the quench speed. Here we study the crossover between the scaling dictated by a slow quench,
which is ruled by the critical properties of the quantum phase transition, and the excitations due to
a faster quench, where the dynamics is often well described by the classical model. We estimate the
value of the quench rate that separates the two regimes and support our argument using numerical
simulations of the out-of-equilibrium many-body dynamics. For the specific case of a φ4 model we
demonstrate that the two regimes exhibit two different power-law scalings, which are in agreement
with the KZ theory when applied to the quantum and to the classical case. This result contributes
to extending the prediction power of the Kibble-Zurek mechanism and to provide insight into recent
experimental observations in systems of cold atoms and ions.

PACS numbers: 64.60.Ht, 64.70.Tg, 05.30.Rt, 05.70.Fh, 05.10.-a.

Developing a comprehensive theoretical framework for
non-equilibrium phenomena is a challenging problem
in physics with impact well beyond this specific disci-
pline [1, 2]. A systematic understanding is for instance
crucial for quantum-based technologies, which require
the control of many-body physical systems at the quan-
tum level. This question has recently boosted theoret-
ical and experimental studies of the out-of-equilibrium
dynamics of many-body systems [3–17]. Within this
context, the Kibble-Zurek (KZ) paradigm provides an
elegant and relatively simple theoretical framework for
describing some aspects of out-of-equilibrium dynamics
due to a temporal variation of external fields (quench)
across a second-order phase transition [18, 19]. The
KZ mechanism, through a comparison between time
scales, connects equilibrium properties, such as the uni-
versal critical exponents, with defect statistics after the
quench, and is able to predict scalings for the defects
density as a function of the quench time τQ. Such
paradigm was investigated in several experimental set-
tings, such as superfluid helium [20, 21], superconduct-
ing films and rings [22, 23], ion Coulomb crystals [5–
8], quantum atomic gases [4, 9, 11, 24, 25] and liquid
crystals [26, 27]. Nevertheless, experiments performing
quenches across quantum phase transitions in ultracold
atom systems [10] and ions [5–8] reported scaling of de-
fects that are explained by a classical model equivalent
to the mean-field approximation of the quantum model.
It was argued that this behaviour was due to the imple-
mented quench rates being too fast to access the quantum
critical behaviour, and thus quantum fluctuations playing
no role [11, 28]. This poses then the issue of developing
a unified framework that encompasses the two regimes
while quantifying the quench speed required to observe
the quantum critical scaling. This knowledge is crucial

for experiments aiming at characterizing the behaviour
of quantum systems undergoing quenches. If confirmed,
it would contribute to a better understanding of the out-
of-equilibrium dynamics, and thus to the development
of a systematic theory for slow quenches across critical
regions [1, 29–31].

In this Letter we consider quenches across quantum
critical points possessing an upper critical dimension D∗,
below which quantum fluctuations are relevant in deter-
mining the critical behaviour [32, 33]. Here we show
that, even for dimensions D < D∗, one can observe a
power-law scaling governed by the classical behaviour
(i.e. the behaviour of the mean-field solution), which
we denote by classical KZ. We argue that this occurs
when the quench rate 1/τQ is faster than the threshold
1/τ×Q , where the quench time τ×Q separates the classi-
cal KZ from the quantum critical scaling, which we de-
note by quantum KZ. Our paradigm allows us to identify
the boundaries of these regimes by suitably recasting the
Ginzburg criterion [34, 35], a concept of equilibrium sta-
tistical mechanics, in a non-equilibrium framework, via
the KZ paradigm. We verify our conjecture with quan-
tum many-body simulations of non-equilibrium dynam-
ics.

As a prototypical model to study we consider the φ4

lattice theory in D = 1 + 1 dimensions. This model
exhibits a quantum phase transition of the universality
class of the Ising chain in transverse field [36–39], while
the classical behaviour is captured by Landau-Ginzburg
theory [40], and corresponds to the mean-field solution of
the model. The model is described by the (dimensionless)
Hamiltonian

H =
1

2

L∑
j=1

[
π2
j + Ω0 ε̃(t)y

2
j + 2gy4j + (yj − yj+1)2

]
, (1)
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Figure 1: (color online) Inset: Phase diagram of the φ4 lat-
tice model, Eq. (1), at zero temperature, as a function of
the control field ε and of the effective Planck constant }.
The black dot-dashed line indicates the parameters for which
G = 1, the green dashed line ε = 0 divides the ordered phase
(above) from the disordered one (below). The purple area at
ε× < ε < 0 indicates the quantum critical region with G < 1,
the classical (or mean-field) region lies at ε < ε× (yellow area),
with G > 1. The black arrows represent sample quench paths,
with parametric symmetric intervals across the critical point.
Main: Crossover diagram of the KZ mechanism. The relax-
ation time τ(ε) is displayed as a function of the distance from
the critical point. For fast quenches the KZ equation τ = |ε/ε̇|
yields freeze-out points ε̂fast which fall in the classical region
ε̂fast < ε× (yellow area), for which we predict classical KZ
scaling. For slow quenches the the freeze-out points ε̂slow fall
in the quantum critical region ε× < ε̂slow < 0 (purple area),
for which we expect the quantum KZ scaling.

where yj , πj are conjugate variables satisfying the com-
mutation relation [yj , π`] = i}δj,`, and j = 1, . . . , L, with
L size of the lattice. The effective Planck constant } is di-
mensionless and quantifies the relative strength of quan-
tum fluctuations, g > 0 and Ω0 > 0 are constants, and
ε̃(t) is the control field, whose value is quenched across
the critical value ε̃c. Hereafter, we define ε(t) = ε̃c− ε̃(t),
shifting the critical value to ε = 0. The model defined
by Eq. (1) has a wide variety of experimental realizations
−for instance, the zigzag instability of a chain of repul-
sively interacting particles, for which } = ~/

√
E0a2m,

with a being the lattice constant, m the particle mass,
and E0 the characteristic interaction energy [36, 38, 39].
At zero temperature the model exhibits a disordered
phase for ε < 0, separated from a locally ordered, Z2

broken-symmetry phase at ε > 0 by a second-order phase
transition. The relative weight of quantum fluctuations,
here represented by the parameter }, gives rise to a shift
of the transition point with respect to the classical value.
For } = 0, the transition occurs at ε̃c(} = 0) = 0 and

its behaviour is fully described by the classical model
[41], which is equivalent to a mean-field treatment of the
many-body problem. For } > 0, instead, the critical-
ity belongs to the universality class of the Ising model
in 1+1 dimensions and the critical value ε̃c(}) decreases
monotonically with } [36, 38, 42, 43] according to the law
ε̃c(}) ' 3g}(ln } + c′)/πΩ0 with non-universal constant
c′ ' 2.63 [42].

The dynamical crossover argument we are about to
introduce employs the equilibrium concept of quantum
critical width |ε×|, i.e. the width of the parameter region
ε ∈ [ε×, 0] where quantum fluctuations become relevant.
The value ε× identifies two regimes, which are sketched
in Fig. 1 (inset): the yellow area at ε < ε× corresponds to
the classical region, where the mean-field approximation
is valid, while the purple area at ε× < ε < 0 pinpoints
the quantum critical region. The shift ε̃c(}) is a good ap-
proximation for the quantum critical width: ε× ' ε̃c(}),
but ε× can also be estimated by means of the Ginzburg
criterion [35, 44] (see the Supplemental Material for de-
tails).

We now assume that ε is varied in time according to
linear-ramp quenches with total quench time τQ, whose
specific form reads

ε(t) =
t

τQ
for t ∈

[
−τQ

2
,
τQ
2

]
(2)

so that the quench is symmetric about the critical point.
According to KZ hypothesis, the dynamics follows the
adiabatic trajectory as long as the instantaneous relax-
ation time τ(t) of the system, which corresponds to the
relaxation time at equilibrium for ε = ε(t), is smaller
than the quench time scale Td(t) = |ε/ε̇|. Critical slow-
ing down has the consequence that during the quench
adiabaticity breaks down. This occurs around instant
−t̂ (t̂ > 0), such that τ(−t̂) ' Td(−t̂) (see red empty
symbols in Fig. 1). The latter equation identifies t̂ and
delivers the scaling relation t̂ ∼ τpQ, where the exponent
p is determined by the equilibrium properties of the sys-
tem at ε̂ = ε(−t̂) = −t̂/τQ. The time-scale t̂ is denoted
as freeze-out time, since KZ theory assumes that the sys-
tem does not change the configuration it possesses at this
instant so that the dynamics from −t̂ on is frozen.

Here we argue that the exponent p is crucially deter-
mined by whether ε̂ is larger or smaller than ε×. In
particular, if the quench is slow enough ε̂ falls in the
fluctuation-dominated region (purple area in Fig. 1), i.e.
ε× < ε̂slow < 0, and the dynamics reveals the KZ scal-
ing with the universal properties of the quantum critical
point (quantum KZ). In this regime, p = zν/(1 + zν),
being τ ∼ |ε|−zν . For the φ4 model in D = 1 + 1,
where z = ν = 1 [45, 46], then p = 1/2. Analo-
gously, the healing length at the freeze-out time scales

as ξ̂ ∼ |ε̂|−ν ∼ τ
ν/(1+zν)
Q = τ

1/2
Q . On the other hand,

for fast quenches, ε̂ may end up in the classical region
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(yellow area in Fig. 1), that is ε̂fast < ε×, where τ gen-
erally undergoes a different scaling τ ∼ |ε|m, dominated
by the classical critical exponents, namely, ν = 1/2 and
z = 1. These exponents deliver the power law scaling of

the healing length ξ ∼ τ1/3Q [15, 47–51].
For the purpose of our analysis, it is useful to define the

crossover quench time τ×Q , which is directly determined
from the crossover value ε× for the driving field, and
reads

τ×Q ' zν}|ε×|
−1−zν/ϕ (3)

where ν and z are the quantum critical exponents, while
ϕ is the prefactor of the energy gap scaling around criti-
cality: Egap ' ϕ|ε|zν .

We test this paradigm by means of numerical simula-
tion of the many-body model, employing a Matrix Prod-
uct State (MPS) ansatz for quantum field theories on a
lattice [52]. Equilibrium simulations are carried out by
employing a reduced basis of local orbitals, containing
the q lowest energy orbitals of the non-interacting prob-
lem, and then by performing a Density Matrix Renormal-
ization Group technique [53], consistently with Ref. [39].
We adopt an innovative approach for the non-equilibrium
simulations: our scheme alternates between applying lo-
cal quasi-unitary transformations – which implement the
changes in local reduced wavefunction basis representa-
tion – and Time-Evolving Block Decimation steps [54, 55]
(a complete description of the algorithm is presented in
the Supplemental Material). All the simulations pre-
sented here have been checked for convergence up to a
relative error of the order of few percent, correspond-
ing to local dimension up to q = 20 orbitals and MPS
bondlink dimension up to m = 50.

We perform linear-ramp quenches from the disordered

Figure 2: (color online) Deviation ∆C
(y)
j =

|〈yjyj+1〉f − 〈yjyj+1〉G| of the nearest neighbour dis-
placement correlators 〈yjyj+1〉f in the final state after the
quench with respect to the final ground state value 〈yjyj+1〉G,
plotted as a function of the quench time τQ and the site
index j. Here a chain of L = 120 sites was considered, while
Ω0 = 1, } = 0.1 and g ' 8.7.

into the ordered phase, using ε as driving parameter ac-
cording to Eq. (2), for different Ω0 and total quench
time τQ (g = 93 ζ(5)/16 ln 2 ' 8.695, compatibly with
Ref. [39] to simulate the dynamics of a chain of ions, and
} = 0.1). We then analyse the many-body state immedi-
ately after the quench as a function of τQ = tQ/ε0. The
correlations 〈yjyj′〉f , evaluated on the final state, carry
information about structural defects present in the sys-
tem (see e.g. Fig. 2), and allow us to calculate the corre-

lation length ξ =
√∑

6̀=0(|`| − 1)2C`/(
∑
` 6=0 C`), where

C` is the bulk average of the correlator 〈yjyj+`〉, obtained
after discarding a quarter of the system size from each
edge to avoid boundary effects. We also calculate the fi-
nal excitation energy Eexc = 〈H〉f −EG, evaluated with
respect to the ground state energy EG of the final Hamil-
tonian.

We carried out real-time evolution simulations for (i)
several quench times τQ distributed over various orders
of magnitude, to detect the power-law scalings, and (ii)
increasing chain lengths L, up to 120 lattice sites, to
extrapolate the behaviour at the thermodynamic limit.
Moreover, since we have considered quenches of finite
amplitude Ω0, we have taken (iii) different parametric
intervals Ω0. In fact, the crossover is visible only if the
quench starts in the classical critical region, requiring
that ε(−τQ/2) < ε× which yields Ω0 > 4g} ' 3.5, oth-
erwise only the quantum KZ scaling emerges. Samples
of our data are collected in Fig. 3, in three panels show-
ing results respectively for Ω0 = 1.15 (path A), Ω0 = 30
(path B) and Ω0 = 9 (path C). Using ϕ computed from
the equilibrium energy gaps (data not shown) we esti-
mate via Eq. (3), the crossover quench time τ×Q ' 7.
Indeed, the correlation length ξ exhibits two visibly dif-
ferent power-law scalings ξ ∼ τwQ . Path A starts in the
quantum critical region, so it does not detect the classi-
cal KZ. In order to smoothen the fluctuations mostly due
to the finite size effects, we average the curves for var-
ious system sizes and fit the power-law decay of ξ(τQ).
The resulting exponent is w = 0.52± 0.04, matching the
quantum KZ prediction w = 1

2 [45, 46]. Path B starts
in the far classical critical regime, and reveals a scaling
power w = 0.33 ± 0.02, consistent with w = 1

3 of the
classical KZ regime [47–49]. Finally, path C reveals the
dynamical crossover between the two KZ regimes. The
correlation length, reported in Fig. 3, shows clearly the

crossover between the classical KZ ξ ∼ τ
1/3
Q for low τQ

and the quantum KZ ξ ∼ τ1/2Q for high τQ. We find that

τ×Q approximates the observed crossover time by a ∼ 20%
discrepancy, in agreement with our conjecture. As the
quench ends in a gapped ordered phase, for sufficiently
slow quenches the defects scaling behaviour can also be
detected via the excitation energy, or excess heat, Eexc

[30, 56, 57]. In the quantum KZ regime the excitation en-

ergy should scale as Eexc ∼ ξ̂−z ∼ τ
−νz/(1+νz)
Q = τ

−1/2
Q .
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Figure 3: (color online) Quenches for } = 0.1, g ' 8.7, performed at various parametric interval amplitudes Ω0, respectively
Ω0 = 1.15 (A), Ω0 = 30 (B) and Ω0 = 9 (C). Different colors of data sets show different chain sizes (orange L = 40, yellow
L = 60, green L = 80, cyan L = 100, blue L = 120), while the purple curve is the average over the five sizes. The main
plots show the correlation length ξ of the order parameter, measured at the end of the quench, as a function of the inverse
quench rate τQ. The insets show the final excitation energy Eexc = 〈H〉f − EG, again as a function of τQ. Panel (A): The
quench starts in the fluctuation dominated region, so the quantum KZ is expected, and confirmed by a power-law scaling of
the correlation length fitted by ξ ∼ τ0.52±0.04

Q . Panel (B): The quench interval Ω0 is two orders of magnitude larger than the

size of the quantum critical region, so the classical KZ is predicted for τQ < τ×Q . The scaling we find for the correlation length

is ξ ∼ τ0.33±0.02
Q . Panel (C): For intermediate interval sizes, we explicitly detect the crossover between the predicted classical

KZ ξ ∼ τ
1/3
Q and the quantum KZ ξ ∼ τ

1/2
Q . The grey area shows the location of the crossover τ×Q we estimated with an

uncertainity of about 20%. The excitation energies scale according to Eexc ∼ τ−0.50±0.01
Q for both (A) and (B) cases, thus

regardless of the regime.

Predicting an excitation energy scaling in the classical
regime is harder since the mean-field relaxation mech-
anism is not captured by the energy gap [56]. We nu-
merically determined the scaling of the excitation energy,

and find Eexc ∼ τ−w
′

Q with w′ = 0.505 ± 0.008 for path
A (quantum KZ), in agreement with the KZ hypothesis.
For path B (classical KZ), on the other hand, we find
also a power-law scaling with w′ = 0.497± 0.008. We at-
tribute this discrepancy from the expected scaling of the
mean-field φ4 to the fact that in this regime, where the
quenches are fast and thus excite higher energy states,
the excess energy does not probe the gap energy [56]:
Our result shows that, accordingly, it cannot discrimi-
nate between the two regimes.

In conclusion, we provided a unified framework which
connects classical and quantum KZ mechanisms, by pre-
dicting and identifying the timescale τ×Q that discrim-
inates between the quench rates revealing the classical
and the quantum KZ scaling respectively. Such a conjec-
ture is strongly supported by our numerical results and
could be tested in experiment at finite temperatures T ,
provided one starts the quench from sufficiently strong
control fields exceeding the thermal energy according to
ε0 � (κT/ϕ)1/zν and that the thermalization timescale
of the system is longer than τQ.

Our results suggest that, not only the KZ mechanism is

a robust paradigm, along which it is worthwhile trying to
develop a theoretical framework for slow quenches across
phase transitions, but also that the freeze-out picture is
quantitatively relevant. We remark that the Ginzburg
criterion can be straightforwardly generalized to all di-
mensions D < D∗ as well as to other types of phase
transition characterized by an upper critical dimension.
Our treatment could be extended to encompass quench
dynamics at finite temperatures [35], where scattering
between defects during the quenches affect the result-
ing scaling [58], and across phase transitions which are
weakly first order (nearly second order) [59, 60]. We fur-
ther notice that our numerical setup allows us to fur-
ther explore the dynamics indicated in recent theoretical
works, which went beyond the KZ theory and analysed
relaxation after quenches [61, 62]. This work sheds light
onto the role played by quantum fluctuations and the
dynamical emergence of quantum coherence [63, 64], fos-
tering the perspective of dynamically engineering macro-
scopic quantum many-body states [65].
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Rev. X 5, 021015 (2015).

[29] C. De Grandi, A. Polkovnikov, and A. W. Sandvik, Phys.
Rev. B 84, 224303 (2011).

[30] A. Chandran, A. Erez, S. S. Gubser, and S. L. Sondhi,
Phys. Rev. B 86, 064304 (2012).

[31] C.-W. Liu, A. Polkovnikov, and A. W. Sandvik, Phys.
Rev. B 89, 054307 (2014).

[32] J. Cardy, Scaling and Renormalization in Statistical
Physics, Cambridge Lecture Notes in Physics (Cam-
bridge University Press, 1996), ISBN 9780521499590.

[33] M. Henkel, Conformal Invariance and Critical Phenom-
ena, Texts and monographs in physics (Springer, 1999),
ISBN 9783540653219.

[34] J. Als-Nielsen and R. J. Birgeneau, American Journal of
Physics 45, 554 (1977).

[35] D. J. Amit, Journal of Physics C: Solid State Physics 7,
3369 (1974).

[36] E. Shimshoni, G. Morigi, and S. Fishman, Phys. Rev.
Lett. 106, 010401 (2011).

[37] E. Shimshoni, G. Morigi, and S. Fishman, Phys. Rev. A
83, 032308 (2011).

[38] P. Silvi, G. De Chiara, T. Calarco, G. Morigi, and
S. Montangero, Annalen der Physik 525, 827 (2013),
ISSN 1521-3889.

[39] P. Silvi, T. Calarco, G. Morigi, and S. Montangero, Phys.
Rev. B 89, 094103 (2014).

[40] H. E. Stanley, Introduction to Phase Transitions and
Critical Phenomena (Oxford University Press, 1971).

[41] S. Fishman, G. De Chiara, T. Calarco, and G. Morigi,
Phys. Rev. B 77, 064111 (2008).

[42] D. Podolsky, E. Shimshoni, P. Silvi, S. Montangero,
T. Calarco, G. Morigi, and S. Fishman, Phys. Rev. B
89, 214408 (2014).

[43] S. Sachdev, Phys. Rev. B 55, 142 (1997).
[44] A. Pelissetto, P. Rossi, and E. Vicari, Phys. Rev. E 58,

7146 (1998).
[45] W. H. Zurek, U. Dorner, and P. Zoller, Phys. Rev. Lett.

95, 105701 (2005).
[46] J. Dziarmaga, Phys. Rev. Lett. 95, 245701 (2005).
[47] J. Dziarmaga, Phys. Rev. Lett. 81, 1551 (1998).
[48] A. del Campo, G. De Chiara, G. Morigi, M. B. Plenio,

and A. Retzker, Phys. Rev. Lett. 105, 075701 (2010).
[49] G. D. Chiara, A. del Campo, G. Morigi, M. B. Plenio, and

A. Retzker, New Journal of Physics 12, 115003 (2010).
[50] A. del Campo, M. M. Rams, and W. H. Zurek, Phys.

Rev. Lett. 109, 115703 (2012).
[51] R. Nigmatullin, A. del Campo, G. De Chiara, G. Mo-

rigi, M. B. Plenio, and A. Retzker, Phys. Rev. B
93, 014106 (2016), URL http://link.aps.org/doi/10.

1103/PhysRevB.93.014106.
[52] S. Iblisdir, R. Orús, and J. I. Latorre, Phys. Rev. B 75,

104305 (2007).



6

[53] S. R. White, Phys. Rev. Lett. 69, 2863 (1992).
[54] G. Vidal, Phys. Rev. Lett. 91, 147902 (2003).
[55] S. R. White and A. E. Feiguin, Physical review letters

93, 076401 (2004).
[56] C. De Grandi and A. Polkovnikov, Eds. A. Das, A. Chan-

dra and BK Chakrabarti, Lect. Notes in Phys 802 (2010).
[57] F. Pellegrini, S. Montangero, G. E. Santoro, and R. Fazio,

Phys. Rev. B 77, 140404 (2008).
[58] G. Biroli, L. F. Cugliandolo, and A. Sicilia, Phys. Rev.

E 81, 050101 (2010).
[59] A. Larkin and S. Pikin, SOVIET PHYSICS JETP 29,

891 (1969).
[60] F. Cartarius, G. Morigi, and A. Minguzzi, Phys. Rev. A

90, 053601 (2014).
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