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We provide detailed modeling of the Bragg pulse used in quantum Newton’s cradle-like settings or
in Bragg spectroscopy experiments for strongly repulsive bosons in one dimension. We reconstruct
the post-pulse time evolution and study the time-dependent local density profile and momentum
distribution by a combination of exact techniques. We furthermore provide a variety of results
for finite interaction strengths using a time-dependent Hartree-Fock analysis and bosonization-
refermionization techniques. Our results display a clear separation of timescales between rapid and
trap-insensitive relaxation immediately after the pulse, followed by slow in-trap periodic behaviour.

The study of many-body quantum physics has recently
been transformed by progress achieved in experiments on
ultracold atoms [1]. The context of one-dimensional (1D)
bosonic gases provides a particularly fertile ground for
investigating physics beyond traditional paradigms [2],
with concepts such as Luttinger liquids and integrability
[3] playing a primary role.

One of the main probes of cold gases is Bragg spec-
troscopy [4–6], which consists in applying a pulsed
monochromatic laser grating onto the gas, thereby cre-
ating excitations at (multiples of) the recoil momentum
q. In [7, 8], a two-pulse sequence was optimized to popu-
late the first ±q momentum satellites of a Bose-Einstein
condensate. The theoretical description of this sequence
relied on a two-state model where many-body dynamics
were not included. In 1D however, many-body effects are
inescapable. One of the fundamental models in this con-
text is the Lieb-Liniger gas [9] of δ-interacting bosons.
This model is relevant to the description of experiments
[10], most prominently the quantum Newton’s cradle ex-
periment [11], in which a Bragg pulse is used to initiate
oscillations. Bragg spectroscopy has also recently been
used to investigate correlated 1D Bose gases of rubid-
ium [12] and cesium [13], where heating resulting from
the Bragg pulse was measured and matched using linear
response in the Lieb-Liniger gas [14].

Our main objective is to model the effects of Bragg
pulses for strongly correlated 1D Bose gases, from first
principles, without approximation (so beyond linear re-
sponse), for experimentally relevant setups. We study in-
stantaneous pulses of varying amplitude A and wavevec-
tor q via their effect on physical observables: the time-
dependent local density of the gas, and the experimen-
tally more accessible momentum distribution function
(MDF). We will first focus on the Tonks-Girardeau limit
[15–17] of hard-core bosons both on a periodic interval
and in a harmonic trap [18–26], and then, significantly,
study finite interaction effects.

Modelling Bragg pulses: We model a Bragg pulse
as a one-body potential V (x) = V0 cos(qx) coupling to
the density ρ̂(x) = Ψ̂†(x)Ψ̂(x), where the Bose fields

obey the canonical equal-time commutation relations,[
Ψ̂(x), Ψ̂†(y)

]
= δ(x− y). For a general Bragg pulse the

gas is perturbed for a finite duration T0. We will however
consider the regime where the motion of the particles dur-
ing the pulse can be neglected (the Raman-Nath limit),
also known as a Kapitza-Dirac pulse [27, 28]. Taking the
limit T0 → 0 while keeping A = V0T0 finite, the Bragg
pulse operator ÛB is given by

ÛB(q, A) = exp

(
− iA

∫
dx cos(qx)Ψ̂†(x)Ψ̂(x)

)
, (1)

where we have set ~ = 1. The action of the instanta-
neous pulse on a ground state |ψGS〉 generates the initial
state of a quantum quench [29–31]. Typical experimen-
tal pulses [11–13, 32] correspond to Bragg momentum
q ∼ 2πn and A ∼ 1, where n is the mean density.

The post-pulse time evolution is driven by the Lieb-
Liniger (LL) model of interacting bosons

HLL =−
N∑
i=1

1

2m

∂2

∂x2i
+ 2c

∑
1≤i<j≤N

δ(xi − xj), (2)

either on a ring with periodic boundary conditions or in
a harmonic trap with Vtrap(x) = 1

2mω
2x2. Throughout

the paper, all data is produced with m = 1.
Hard-core limit: We start by considering the hard-

core limit. In this limit the bosonic many-body wave-
function can be related through the Fermi-Bose (FB)
mapping [16] to the many-body wavefunction of free
fermions ψB(x; t) =

∏
1≤i<j≤N sgn(xi − xj)ψF (x; t),

where x = {xj}Nj=1 and ψF (x; t) is the usual Slater de-
terminant of the free single-particle (SP) wavefunctions,
ψF (x; t) = detN [ψj(xi; t)] /

√
N !. Following [19, 24, 26],

the bosonic one-body density matrix and thus the MDF
can be computed efficiently in terms of a single determi-
nant involving the time-dependent fermionic SP states.

In the hard-core limit we will consider two geometries,
a ring geometry with no external potential and an infinite
line in the presence of a parabolic trap. For the former,
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FIG. 1. Time evolution of the density after a Bragg pulse
with q = 3π and A = 1.5, computed by (a) the FB mapping
and (b) the QA approach. The relative differences between
the two results due to finite-size effects are less than 0.4%.

our ground state consists of SP plane waves, on which the
Bragg pulse imprints a cosine phase due to the one-body
potential,

ψj(x; t = 0) =
1√
L
e−iA cos(qx)e−iλ

GS
j x, (3)

with ground-state rapidities {λGS
j = 2π

L

(
−N+1

2 + j
)
}Nj=1

forming a Fermi sea with Fermi momentum λF = πn.
Note that the Bragg momentum is quantized due to the
periodic boundary conditions: q = 2π

L nq with nq ∈ N.
Expanding Eq. (3) in plane waves, the time-dependent
SP wavefunctions after the Bragg pulse yield

ψj(x; t) =

∞∑
β=−∞

Iβ(−iA)√
L

e−i(λj+βq)xe−i(λj+βq)
2t/2m,

(4)

with Iβ(z) the modified Bessel function of the first kind.
The Generalized Gibbs Ensemble (GGE) [30, 33] and

the Quench Action (QA) approach [34, 35] enable the
study of the Bragg pulsed system (on a ring) in the
thermodynamic limit (N → ∞ with N/L fixed). The
GGE can be constructed using the infinite number of
conserved charges {Q̂α}∞α=1 provided by the integrabil-
ity of the LL model, with Q̂2 = 2mĤ, and eigen-
values Qα(λ) =

∑N
j=1 λ

α
j associated to a Bethe state

|λ〉 = |λ1, ..., λN 〉. The expectation values of the charges
on the initial post-pulse state can be computed using the
matrix elements for the Bragg pulse between two Bethe
states |λ〉 and |µ〉 [36], given by

〈µ|ÛB(q, A)|λ〉
LN

= detN

[
Iλj−µk

q

(−iA) δ
(q)
λj ,µk

]
, (5)

where we defined δ
(q)
λ,µ = δ(λ−µ)mod q,0. The GGE

logic [30, 33] then requires the expectation values of all

charges to be reproduced by the equilibrated post-pulse
system, described by a density of rapidites ρspq,A(λ), i.e.

limth
1

L
〈ψq,A| Q̂α |ψq,A〉 =

∫ ∞
−∞

dλ ρspq,A(λ)λα , (6)

for all α ∈ N. This leads to the stationary-state distribu-
tion [37][38]

ρspq,A(λ) =
1

2π

∑
β∈Z

[
θ(λ−βq+λF )−θ(λ−βq−λF )

]
|Iβ(iA)|2

(7)
where θ is the Heaviside step function. The saddle point
distribution is a sum of copies of the ground-state den-
sity of rapidities, ρGS(λ) = 1

2π

[
θ(λ + λF ) − θ(λ − λF )

]
,

shifted by multiples of q and weighted by the modified
Bessel functions. This form of the stationary state is
consistent with the QA approach [39], which furthermore
provides access to the time evolution of local observables
by summing over particle-hole excitations in the vicinity
of ρspq,A(λ) [34, 35, 40].

The time-dependent density of the hard core gas in
the thermodynamic limit can be obtained via the QA
approach or with the FB mapping. Interestingly, one
can obtain the identical result from the non-interacting
limit of the Tomonaga-Luttinger model with a quadratic
band-curvature term. The non-linear Luttinger liquid
theory (nLL) [41, 42] result for finite interactions reads
[43]

〈ρ̂(x, t)〉 = n+
√
K
∑
β 6=0

Jβ

(
−2
√
KA sin

βq2t

2m∗

)
×

× cos(βqx)
sin(βqvst)

πβqt/m∗
, (8)

with Jβ(z) the Bessel function of the first kind. Here,
K is the Luttinger parameter, vs the sound velocity and
m∗ the renormalized effective mass. Surprisingly, the
non-interacting limit with K = 1, vs = λF /m, m

∗ = m,
reproduces the exact TG result. The validity of Eq. (8)
for finite interactions is discussed in the last section of
this article. We compare the TG result against finite
size FB computations for N = 50 in Fig. 1 and observe
relative differences of the order of 0.4% due to finite-size
effects. In the Raman-Nath limit, the post-pulse density
at t = 0 is unaltered from the flat ground state profile. A
sharp density profile then develops, mimicking the one-
body cosine potential, followed by relaxation back to a
flat profile at time scales t ∼ m/qλF = (qvs)

−1.
The QA approach also provides access to the time evo-

lution of the MDF [44][45]. The result is plotted in Fig. 2
along with the FB result for N = 50. Except for mi-
nor disagreements in the sharp peaks due to finite-size
effects, the large-system-size dynamics after the Bragg
pulse is again well captured by a N = 50 FB mapping.
At t = 0, one can show that the MDF (for any value
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FIG. 2. Time evolution of the MDF after a Bragg pulse with
q = 3π and A = 1.4, computed with the QA approach (left
half) and the FB mapping (right half). Because the FB map-
ping treats a finite system (N = 50) the momenta are quan-
tized, causing less pronounced peaks for short times. All other
results are in excellent agreement with the QA computations.

of c) is simply a sum of copies of the ground-state MDF
[46], with a small-k divergence 〈n̂(k)〉GS ∼ k−1/2 in the
TG limit, centered around multiples of q. Similar to the
initial MDF, the late-time distribution behaves like a su-
perposition of independent peaks shifted to multiples of
q, yielding a characteristic ghost-like shape [11]. The
width of each satellite shows no dependence on the value
of q, and is only influenced by the choice of A [47]. Since
in the limit of A → 0 the MDF reduces to the ground
state time-independent distribution, the broadening can
be ascribed to interactions between particles belonging
to different satellites.

Next, we will use the FB mapping to investigate how
these observations translate to the more experimentally
relevant geometry of a harmonic trapping potential, with
the Hamiltonian Htrap = HLL +

∑N
i=1

1
2mω

2x2i and ω
the trapping frequency. The ground state SP harmonic
oscillator wavefunctions are given by

ψj(x) =
1√
2jj!

(mω
π

)1/4
e−

mωx2

2 Hj

(√
mωx

)
, (9)

for j = 1, ..., N , with Hj(x) denoting the Hermite polyno-
mials. Using the propagator for the quantum harmonic
oscillator [48], we compute the time evolution of the SP
wavefunctions [49]:

ψj(x; t) =

∞∑
β=−∞

Iβ(−iA)e−iβq cos(ωt)(x+
βq

2mω sin(ωt))

ψj(x+ βq
mω sin(ωt))e−iω(j+

1
2 )t. (10)

The SP wavefunctions are periodic in time with period
2π/ω, which is reflected in observables such as the density
and the MDF. This periodicity is expected to be broken
by finite-c interactions and anharmonicities in the trap-
ping potential. The time evolution of the density and
the MDF during one period is shown in Fig. 3, where

the contributions from particles belonging to different
satellites are clearly distinguishable. During the initial
stages of relaxation (and around multiples of t = π

ω ) the
density shows strong oscillations and the initially sharply
peaked MDF relaxes rapidly to a broadened shape. This
prerelaxation is well separated from the trap-induced col-
lective periodic motion, suggesting that it is governed by
the same physics as relaxation on a ring.

FIG. 3. The time evolution of the density (top) and MDF
(bottom) in the trap, computed with the FB mapping for
N = 50, ω = 10/N , A = 1.5 and q = 3π.

In Fig. 4 the density at early stages in the oscillation
cycle is compared to that on a ring, the latter being sup-
plemented by a local density approximation (LDA) to
account for the classical expansion of the gas in the trap
[50] [51]. The initial density profile is accurately repro-
duced by the LDA, except for small differences near the
edges originating from gradients in the local density not
accounted for within the LDA [52–55]. Note however
that these differences do not stay confined to the edges
and propagate towards the center as time progresses.

The short-time MDF in the trap and ring geometry is
shown in Fig. 5 up to t = 0.015π/ω. The initial distribu-
tions are nearly identical, after which the MDFs dephase
in a similar fashion to a (pre)relaxed ghost-like shape.
The strong similarities can be attributed to the short-
range correlations characterizing the post-quench steady
state. Large-distance effects due to the trap geometry
lead to discrepancies only at low momenta. The time
scale associated to this (pre)relaxation is estimated to be
the time it takes for a boson traveling with the speed of
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FIG. 4. Time evolution of the density in a trap, computed
with: the FB mapping for N = 50 particles (a), the QA
approach on a ring with an LDA accounting for the trap (b).
The difference between the two results is shown in panel (c).
The Bragg pulse parameters are set to A = 1.5 and q = π
with ω = 10/N .

sound to traverse one density oscillation induced by the
Bragg pulse: t ∼ 2π/qvs. Considering conditions simi-
lar to the Newton’s cradle experiment, we estimate the
short time scale to be of the order of 10 µs. This es-
timate is of the same order of magnitude as the pulse
duration used in [11], suggesting that interaction effects
can be important for longer pulses. This will be treated
in future publications.
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FIG. 5. Time evolution of the MDF for the trap geometry
(solid lines) and the ring geometry (dashed lines), obtained
with the FB mapping for N = 50 particles. The trapping
frequency is set to ω = 10/N , and we used A = 1.5 and
q = 3π. The time step ∆t is set to π

800ω
.

Finite interactions: We now extend our results to fi-
nite interactions by considering the dual fermionic model
to Eq. (2) [56, 57][58]

HF = −
N∑
i=1

1

2m

∂2

∂x2i
− 1

m2c

∑
1≤i<j≤N

δ′′(xi − xj). (11)

Using a self-consistent time-dependent Hartree-Fock
(TDHF) approximation [59, 60], we have performed
finite-c calculations of the density and MDF, shown in
panels (a), (c) and (d) of Fig. 6. The equilibrium
Hartree-Fock computation yields an effective mass of the

planewave quasiparticles given by m∗ = m/(1− 2n/mc)
[59, 60], suggesting that the the out-of-equilibrium finite-
c results can be rescaled according to t→ t(1− 2n/mc),
to produce the same time-dependent behaviour as in the
c → ∞ limit. This is confirmed by the rescaled re-
sults shown in panel (b). Furthermore, the density at
x = 0 shows an enhancement of the high density regions
for increasing c, consistent with a model for attractive
fermions. The nLL result of Eq. (8) reproduces the cor-
rect time scaling for large values of c, but is unable to
account for the increased density oscillations. This dis-
crepancy can be attributed to the neglected irrelevant
operators which cannot be justified by a renormalization
group argument in out-of-equilibrium settings. In panel
(c) the relaxation of the MDF at k = 0, q, 2q shows a
delay in relaxation consistent with a reduced sound ve-
locity vs = πn

m

(
1− 2n

mc + . . .
)
. Finally, the relaxed MDF

in (d) depicts increasingly condensed satellites for smaller
c, as is expected from bosons with decreasing repulsive
interactions.
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FIG. 6. Finite-c results using TDHF for the ring geometry.
Time evolution of the density at x = 0 for N = 50, A = 1
and q = 2π (a, b). In (b) the results of (a) are rescaled
according to t → t(1 − 2n/mc). Time evolution of the MDF
at k = 0, q, 2q for N = 50, A = 1.3 and q = 3π (c) and the
relaxed MDF at t = 0.4 (d).

Conclusion: We have developed a theoretical descrip-
tion of the Bragg pulse for one-dimensional Bose gases
and shown that the time evolution of physical observables
for a Bragg pulsed Lieb-Liniger gas in a trap is charac-
terized by two well-separated time scales. The shortest
time scale is dominated by the trap-insensitive contact
interactions and causes a substantial broadening of the
momentum distribution well before the collective motion
due to the presence of the trap sets in. Our work can be
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extended to include finite interaction effects in harmonic
traps [61], and opens up the possibility to study the in-
fluence of interactions on more general pulse protocols
and to incorporate finite temperature effects.
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Schmiedmayer, F.E. Schreck, D. Weiss and J. van Wezel
for useful discussions. This work was supported by the
Netherlands Organisation for Scientific Research (NWO)
and the Foundation for Fundamental Research on Mat-
ter (FOM), and forms part of the activities of the Delta-
Institute for Theoretical Physics (D-ITP). This research
was done in part under the auspices of the CMPMS Dept.
at Brookhaven National Laboratory, which in turn is
supported by the U.S. Department of Energy, Office of
Basic Energy Sciences, under Contract No. DE-AC02-
98CH10886. We are grateful for support from the Centre
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