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We present results from the first fully relativistic simulations of the critical collapse of rotating radiation
fluids. We observe critical scaling both in subcritical evolutions, in which case the fluid disperses to infinity
and leaves behind flat space, and in supercritical evolutions that lead to the formation of black holes. We
measure the mass and angular momentum of these black holes, and find that both show critical scaling with
critical exponents that are consistent with perturbative results. The critical exponents are universal; they are not
affected by angular momentum, and are independent of the direction in which the critical curve, which separates
subcritical from supercritical evolutions in our two-dimensional parameter space, is crossed. In particular, these
findings suggest that the angular momentum decreases more rapidly than the square of the mass, so that, as
criticality is approached, the collapse leads to the formation of a non-spinning black hole. We also demonstrate
excellent agreement of our numerical data with new closed-form extensions of power-law scalings that describe
the mass and angular momentum of rotating black holes formed close to criticality.

PACS numbers: 04.25.D-, 04.25.dc 04.40.-b, 04.40.Dg

Critical phenomena in gravitational collapse, first reported
in the seminal work of Choptuik [1], refer to properties of so-
lutions to Einstein’s equations close to the threshold of black-
hole formation (see [2, 3] for reviews). Consider a family of
initial data, for a given matter model, parameterized by a pa-
rameter p. Supercritical data will evolve to form a black hole,
while subcritical data will not. The onset of black-hole forma-
tion occurs at some critical value of the parameter, say p∗. The
mass of black holes formed by supercritical data then scales
with

M ' CM |p− p∗|γM , (1)

where the critical exponent γM depends on the matter model,
but not on the specifics of the initial data or their parametriza-
tion (depending on the choice of the parameterization, super-
critical solutions may correspond to p > p∗ or p < p∗). For
subcritical data, for which the fluid disperses to infinity and
leaves behind flat space, the maximum value of the space-
time curvature attained during the evolution also follows crit-
ical scaling (see [4]). For perfect fluids, for example, Ein-
stein’s equations relate this maximum curvature to the maxi-
mum value of the density ρ encountered during the evolution,
leading to a scaling

ρmax ' Cρ |p− p∗|−2γρ (2)

for subcritical data. On dimensional grounds, we must have
γρ = γM . Moreover, in the strong-field region prior to black-
hole formation, the solution approaches a self-similar critical
solution which also depends on the matter model but not the
initial data.

Choptuik’s discovery of these critical phenomena launched
an entire new field of research. Soon after his announcement,
which was based on simulations of massless scalar fields, sim-
ilar phenomena were reported in the collapse of vacuum gravi-
tational waves [5] and radiation fluids [6], followed by numer-
ous other numerical, analytical and perturbative studies for
different matter models, asymptotics, and number of space-
time dimensions (we again refer to [2, 3] for reviews). In par-

ticular, these studies revealed that for some matter models, in-
cluding scalar fields, the self-similarity of the critical solution
is discrete, while for others, including perfect fluids, it is con-
tinuous. For many models the critical exponent γM can also
be found semi-analytically in perturbation theory (e.g. [7, 8]).

The vast majority of these studies, however, was performed
under the assumption of spherical symmetry. In particular, de-
spite the tremendous recent progress in numerical relativity,
only few numerical simulations of aspherical critical collapse
have been performed (e.g. [5, 9–14]). This is even more sur-
prising as several interesting questions cannot be addressed in
spherical symmetry. One such question concerns the angular
momentum in the collapse of rotating matter. To date, the only
fully nonlinear and relativistic study of the role of angular mo-
mentum in critical collapse was performed by Choptuik et.al.
[10], who considered a complex scalar field and constructed
initial data carrying angular momentum in such a way that
the resulting stress-energy tensor was axisymmetric. This ap-
proach leads to an aspherical density distribution, so that it did
not allow for an exploration of the angular momentum’s role
in perturbing spherical critical collapse.

Gundlach [15] (see also [16]) considered nonspherical per-
turbations of the critical solution for perfect fluids, whose
pressure P is related to the density ρ by an equation of state
P = κρ. These studies showed that, close to the onset of
black-formation, the angular momentum scales with

J ' CJ |p− p∗|γJ , (3)

where the critical exponent γJ is related to γM by

γJ =
5 (1 + 3κ)

3 (1 + κ)
γM (4)

for 1/9 < κ . 0.49 (see eq. (23) in [15]). For a radiation fluid
with κ = 1/3 we obtain γJ = 2.5 γM , or γJ ' 0.8895 for the
analytical value γM ' 0.3558 [7, 8]. Combining the scaling
relations (1) and (3) we also have

J ∝MγJ/γM , (5)
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which shows that the angular momentum should decrease
more rapidly than the square of the mass as criticality is ap-
proached, so that, in this limit, the forming black hole should
be non-spinning. This behavior is similar to the observation
that charge does not affect the critical solution in the critical
collapse of charged scalar fields [17, 18].

In this paper we report on what we believe are the first fully
relativistic simulations of the gravitational collapse of rotating
radiation fluids (but see [19] for a study in Newtonian gravity).
We confirm the above relations for the critical exponents, to
within the accuracy of our simulations, and demonstrate ex-
cellent agreement with new closed-form extensions of power-
law scalings that describe the mass and angular momentum of
rotating black holes formed close to criticality [20].

We consider a radiation fluid with P = ρ/3, i.e. κ =
1/3, and generalize the initial data adopted in [6] by al-
lowing the fluid to carry angular momentum (see eqs. (6)
and (7) below). We then evolve these data with the
Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formulation
[21–23], which adopts both a 3+1 decomposition as well
as a conformal rescaling γij = ψ4γ̄ij of the spatial metric
γab ≡ gab + nanb. Here gab is the spacetime metric, na the
normal vector on spatial slices, ψ the conformal factor, and γ̄ij
the conformally related metric. The extrinsic curvature Kij is
related to the time derivative of the spatial metric. We solve
the resulting equations in spherical polar coordinates [24–26],
imposing 1+log slicing and a Gamma-driver condition. The
code makes no symmetry assumptions, but we run it here as-
suming both axisymmetry and a symmetry across the equa-
torial plane. In [14] we used this code to study critical phe-
nomena in the aspherical collapse of a radiation fluid; those
calculations also serve as a calibration of our code for the cal-
culations presented here. We use a logarithmic grid in the ra-
dial direction (see App. A in [14]), and also allow for a radial
regridding to zoom in on the critical solution. In most simu-
lations our radial resolution at the origin is ∆r ' 5 × 10−3

initially, but ∆r ' 5× 10−4 at late times. As in [14] we have
found it sufficient to use only Nθ = 12 angular gridpoints to
resolve one hemisphere.

Following [6] we choose maximally sliced (i.e. K ≡
γijKij = 0) and conformally flat (i.e. γ̄ij = ηij) initial data
with an initial density distribution

ρn ≡ nanbT ab =
η

2π3/2R2
0

exp
(
−(ψ2r/R0)2

)
, (6)

where T ab is the stress-energy tensor. Here ρn is the density as
observed by a normal observer; the density as observed by an
observer comoving with the fluid is ρ ≡ uaubT

ab, where ua

is the fluid’s four-velocity. For spherically symmetric data we
may interpret R ≡ ψ2r as the areal radius. In [14] we consid-
ered aspherical deformations of this density distribution; here
we instead consider rotating fluids with an initial momentum
density

Sϕ ≡ −γϕjniTij =
4

3
ρn

Ω

1 + (ψ2r/R0)2
(7)

and Sr = Sθ = 0. Given Sϕ we solve the momentum con-
straints for a vector potential Wϕ from which the trace-free
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FIG. 1. A sketch of our numerical sequences (see also Table I for
parameters and results). The green dashed lines show our sequences,
with the red dots marking the critical points. The blue line is the fit
(8) through these points and represents the critical curve that sepa-
rates supercritical from subcritical configurations. Supercritical data
have η > η∗ for sequences of constant Ω, but Ω < Ω∗ for sequences
of constant η.

part of the extrinsic curvature Aij can be computed (see, e.g.,
Box 3.1 in [27].) Solving the Hamiltonian constraint then
yields the conformal factor ψ. We solve the coupled set of
equations iteratively, updating the sources (6) and (7) between
iterations, until the solution has converged to a desired accu-
racy. For a radiation fluid, the above fluid variables are identi-
cal to the corresponding conserved fluid variables used in our
hydrodynamical scheme, from which the primitive fluid vari-
ables ρ, P and vϕ can then be recovered. For Ω = 0 we also
have ρ = ρn initially, so that the above data reduce to the ini-
tial data of [6] in that limit. To complete the initial data we
choose a “precollapsed” lapse α = ψ−2 and zero shift at the
initial time.

In (6) and (7), η parametrizes the overall amplitude of the
density, and Ω the rotation rate. A third parameter, R0, deter-
mines the length-scale of the problem. We fix our code units
by setting R0 = 1; all dimensional quantities are hence ex-
pressed in units of R0.

In the following we explore several different sequences
through our two-dimensional parameter space, as indicated by
the dashed green lines in Fig. 1. Six of these sequences (la-
beledA - F ) are for rotating configurations; a seventh (labeled
N ) is the non-rotating limit [6] (also [14]).

We first explore the threshold of black-hold formation by
exploring sequences A - F in the vicinity of criticality. For
each sequence we vary the parameter that is not being held
constant to bracket the critical value of this parameter (the red
dots in Fig. 1). We summarize the parameters and results for
these sequences in Table I. As one might expect, rotation pro-
vides centrifugal support to the fluid approximately propor-
tional to the square of the rotation rate, so that with Ω 6= 0 a
black hole forms only for larger values of η than with Ω = 0.
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FIG. 2. Scalings for sequences D and F . The upper panel shows re-
sults for the maximum density ρmax encountered in subcritical evo-
lutions, while the lower two panels show results for the mass M and
angular momentum J of black holes formed in supercritical evolu-
tions. The crosses and dots denote our numerical results; the lines
represent fits of the scaling laws (1), (3) and (2) based on the param-
eters listed in Table I. The parameter p corresponds to Ω in sequence
D, but to η in sequence F .

This is borne out by the blue line in Fig. 1, which represents
the leading-order fit

η∗(Ω∗) = η∗0 + 0.36 Ω2
∗ (8)

through the critical points (η∗,Ω∗) and marks the critical
curve that separates the supercritical from subcritical parts of
our parameter space. Here η∗0 ' 1.0184 denotes the critical
value for zero rotation.

For supercritical data, which correspond to η > η∗ for se-
quences of constant Ω, but to Ω < Ω∗ for sequences of con-
stant η, we find an apparent horizon [28] and measure its irre-
ducible mass Mirr and angular momentum J (see [29]) once
their values have settled down to approximately constant val-
ues. (Angular momentum that does not end up in a black hole
is carried away by the dispersing fluid.) Assuming that the
new black hole is a Kerr black hole we then compute the Kerr
mass M = Mirr(1 + (J/M2

irr)
2/4)1/2. Fitting our numerical

data for the mass M and angular momentum J to the scaling
relations (1) and (3) then yields the critical exponents γM , γJ .
For subcritical data we fit the maximum encountered densities
ρmax to the scaling relation (2) to find γρ. We show examples
of these scalings for sequences D and F in Fig. 2, and we list
all our results in Table I.

As we discussed in more detail in [14], our results for γM ,
γJ and γρ depend somewhat on which numerical data are in-
cluded in the fit. Close to criticality, where the evolution de-
velops increasingly small features, the numerical solution be-
comes increasingly affected by numerical error. We have con-
firmed that we can extend our results closer to criticality by
using a higher grid resolution. Too far from criticality, on the
other hand, the results show deviations from the scaling rela-
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FIG. 3. Graphs of the angular momentum J versus the mass massM
of black holes formed in our supercritical evolutions. The dots denote
numerical results, while the solid lines are fits based on the parame-
ters listed in Table I. The slope of these lines is given by γJ/γM (last
column in Table I), which are close to the analytical value of 2.5 for
a radiation fluid.

tions (1), (2) and (3), which hold only in the immediate vicin-
ity of criticality. Accordingly, we estimate our results for the
critical exponents to be accurate to within only a few percent.

Within these error bars, our results for the critical exponents
γρ, γM and γJ do not appear to be affected by the angular
momentum of the initial data, which is consistent with the
expectations from perturbative treatments [15, 20] as well as
the numerical findings of [10]. Moreover, our findings for
γM and γρ are consistent with the analytical value of γM =
γρ ' 0.3558 [7, 8], while our results for γJ are close to the
analytical value of γJ ' 0.8895 [15]. We also note that we
obtain consistent values for these exponents independently of
whether we vary η or Ω, i.e. independently of the “direction”
in which the critical curve in Fig. 1 is crossed (see also [20]).

In Fig. 3 we graph the angular momentum J versus the
mass M of black holes formed in supercritical sequences. As
expected from (5) we find a power-law relation between these
two quantities, with the exponent given by γJ/γM . Our nu-
merical values for this ratio, listed in the last column in Ta-
ble I, are close to the analytical value γJ/γM = 2.5 for a
radiation fluid according to the perturbative treatment of [15]
(see eq. (4) above).

We now explore the supercritical “horizontal” sequences
B, D and E in Fig. 1 between Ω = 0 and Ω∗. As shown
in [20], the simple power laws (1) and (3) can be extended
to provide closed-form expressions for the mass and angular-
momentum of rotating black holes formed not only close to
criticality, as predicted in [15, 16], but in the entire supercrit-
ical region shown in Fig. 1. Normalizing with respect to the
maxima Mmax(η) and Jmax(η) of the mass and angular mo-
mentum for a given value of η (withMmax(η) = M(η, 0)) we
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fixed par. crit. value Mtot Jtot γρ γM γJ γJ/γM

N Ω = 0.0 η∗ ' 1.0184 0.509 0.0 0.357 0.363 – –
A Ω = 0.05 η∗ ' 1.0192 0.510 0.016 0.364 0.358 0.870 2.43
B η = 1.02 Ω∗ ' 0.06804 0.511 0.022 0.356 0.360 0.870 2.42
C Ω = 0.1 η∗ ' 1.0220 0.512 0.032 0.357 0.360 0.873 2.43
D η = 1.035 Ω∗ ' 0.2147 0.520 0.070 0.357 0.360 0.872 2.42
E η = 1.0505 Ω∗ ' 0.2997 0.5296 0.100 0.359 0.364 0.876 2.41
F Ω = 0.3 η∗ ' 1.0506 0.5296 0.100 0.360 0.362 0.888 2.45

TABLE I. Summary of parameters and results for six different rotating sequencesA through F . For each sequence we list which parameter we
fix, the critical value of the parameter that is being varied, the ADM mass Mtot and angular momentum Jtot of the critical initial data, as well
as results for the critical exponent γρ for subcritical data and γM and γJ for supercritical data. We also include results for the non-rotating
limit, marked N , which have been obtained with a different numerical grid setup (see [14]).
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FIG. 4. Black hole masses M and angular momenta J as a function
of η and Ω for sequences B, D and E. The dots denote numerical
results, while the solid lines are the analytical power-law scalings (9)
and (10). The insets show the raw data for M and J as a function of
Ω, rather than the rescaled data as in the main graphs.

have

M(η,Ω)

Mmax(η)
' (1− x2)γM (9)

and

J(η,Ω)

Jmax(η)
' x(1− x2)γJ

C
. (10)

Here we have defined x ≡ Ω/Ω∗(η) (where Ω∗(η) can be
found by inverting (8)), and C ' 0.4025 is the maximum
of the function x(1 − x2)γJ on the interval [0, 1]. Close to
the critical curve, i.e. in the limit x → ±1, eqs. (9) and (10)
reduce to (1) and (3).

In Fig. 4 we compare our numerical results with the expres-
sions (9) and (10). Even though the masses and angular mo-

menta themselves take vastly different values along the differ-
ent sequences (see the insets in Fig. 4), they agree remarkably
well when rescaled as suggested by (9) and (10), especially
for the sequences closer to η∗0.

The maximum value of J/M2 achieved on a line of con-
stant η scales with (η − η∗0)γM/2 [20]. In the parameter re-
gion of Fig. 1, the largest values of J/M2 are about 0.29.
We therefore expect deviations from power-law scalings for
larger values of η in order to avoid violations of the constraint
J/M2 < 1. We plan to explore this regime in future work.

To summarize, we report on what we believe are the first
fully relativistic simulations of the gravitational collapse of
rotating radiation fluids. We consider different sequences in
our two-dimensional parameter space, and locate the critical
curve separating supercritical from subcritical data. We ob-
serve critical scaling of the black hole mass and angular mo-
mentum for supercritical data, and of the maximum encoun-
tered density for subcritical data. The critical exponents are in
good agreement with the perturbative results of [15], are not
affected by angular momentum, and are also universal in the
sense that they do not depend on the direction in which the
critical curve is crossed. Our findings confirm that the angu-
lar momentum decreases more rapidly than the square of the
black hole’s mass as criticality is approached, so that in this
limit the black hole is non-spinning. We also demonstrate that,
for supercritical data, the black hole masses and angular mo-
menta satisfy new closed-form power-law scalings [20]. Our
findings therefore confirm several results on the role played
by angular momentum in the critical gravitational collapse of
radiation fluids, that, to date, had only been predicted from
perturbative calculations. We expect that our results do not
depend on the specific choice of initial data, but that remains
to be verified in future studies.
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