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We report the results of new differential force measurements between a test mass and rotating
source masses of gold and silicon to search for forces beyond Newtonian gravity at short separations.
The technique employed subtracts the otherwise dominant Casimir force at the outset and, when
combined with a lock-in amplification technique, leads to a significant improvement (up to a factor
103) over existing limits on the strength (relative to gravity) of a putative force in the 40–8000 nm
interaction range.
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Although the gravitational attraction between two
point masses was the first force to be described it re-
mains, in comparison to other fundamental forces, poorly
characterized. Unification theories, such as string the-
ory, which introduce n compact extra spatial dimensions,
predict deviations from Newtonian gravity over sub-mm
scales [1, 2]. Also, many extensions to the Standard
Model predict the existence of new light bosons, the ex-
change of which would lead to new forces. In both cases,
the existence of compact extra dimensions or exchange of
new light bosons, the non-Newtonian interaction between
two point masses m1 and m2 separated by a distance r
can be parametrized as

V (r) = −Gm1m2

r
αe−r/λ, (1)

where G is the Newtonian gravitational constant, α is the
strength of the Yukawa-like correction arising from new
physics, and λ is its characteristic range. In the case of
compact extra dimensions, λ closely corresponds to the
size of the extra-dimension. For the exchange of a boson
of mass m, λ = ~/mc [6].

Motivated in part by these considerations a large num-
ber of experiments have been conducted to constrain the
value of α (see for example the reviews [3, 4]). While
they have been successful in constraining |α| < 1 for
λ > 50 µm [5], the limits on α are much less restrictive
for λ < 10 µm. Constraints on α for small values of λ are
much more difficult to achieve due to the small effective
masses (i.e. mass within a distance r ∼ λ of the surface)
interacting through the Yukawa-like contribution. Com-
pounding the problem at sub-micron separations, the ef-
fects of vacuum fluctuations eventually become dominant
after electrostatic contributions have been minimized.
Hence, many of the limits in the λ ∈ [10, 10000] nm
range have been obtained by subtracting from the mea-
sured interaction the calculated contribution from the
Casimir force [7–10] which arises from vacuum fluctua-

tions. While useful, this approach has two main draw-
backs: (i) The subtracted background is relatively large,
and hence small corrections to the background result in
large changes in the derived limits; (ii) It is not clear what
the appropriate background to subtract is. While some
groups use a plasma model for the extrapolation to zero
frequency of the dielectric function of the metal, others
use a Drude model [11]. The correct approach remains
a matter of controversy, and new experiments have been
proposed to help resolve this problem [12].

In the absence of electromagnetic contributions, a com-
parison of the forces exerted on a test mass by materials
of different densities leads to constraints on α and λ in
Eq. (1). Different materials differ not only in their den-
sities but also in their response to vacuum fluctuations,
and hence these effects must be suppressed when search-
ing for the presence of putative new forces at sub-micron
separations. The “isoelectronic” or “Casimir-less” tech-
nique introduced in [13] capitalizes on the fact that the
response of a sample to vacuum fluctuations is mainly
a surface effect, whereas any new force interacts with a
portion within range ∼ λ of its surface. In the “Casimir-
less” technique contributions from vacuum fluctuations
are suppressed by coating the source mass with a layer of
Au of thickness larger than the plasma wavelength of Au,
λp = 135 nm such that the difference in the Casimir in-
teraction between the underlying structure in the source
mass with the test mass is attenuated by a factor larger
than 106 [13, 15]. The Au layer thus serves not only to
reduce conventional electrostatic effects as in other exper-
iments but, more significantly, to suppress vacuum fluc-
tuation contributions associated with the composition of
the test mass.

While earlier experiments successfully demonstrated
the possibility of subtracting the Casimir background,
the performance of the technique was limited by two ex-
perimental constrains. (i) To observe a signal at the reso-
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nance frequency ωr of the mechanical oscillator (without
anything moving at ωr) a heterodyne technique was used.
The test mass was harmonically positioned over the two
sides of the source mass at ω1 while the separation be-
tween the test and source masses was harmonically varied
with amplitude δz at ω2 = ωr − ω1, effectively reducing
the hypothetical Yukawa-like signal by δz/λ ∼ 0.02. (ii)
The sample was made in such a way that the thicknesses
of the two sides of the source mass were unintentionally
different. This translated into a ∼ 3 fN systematic signal
identified with the distance dependence of the Casimir
force. This residual signal yielded the limits obtained in
Ref. [13].

In this paper we report a new approach to improve the
limits in the {λ, α} phase space. The use of a rotating
source mass allowed us to fully utilize the high force sen-
sitivity provided by the large mechanical quality of the
microelectromechanical torsional oscillator (MTO)[14].
Furthermore, an implementation of the source mass
where there is no correlation between its thickness and its
angular position yielded an unprecedented level of sub-
traction of the background arising from vacuum fluctua-
tions.

The test mass (a R = 149.3± 0.2 µm sapphire sphere
covered with a tCr ∼ 10 nm layer of Cr and a tAu ∼
250 nm Au-film) was glued close to the edge (at a distance
b = 235± 4 µm from the axis of rotation) of the 500 µm
× 500 µm plate of the oscillator. Gluing the sphere re-
duced the MTO’s natural frequency of oscillation from
f0 = 708.23 ± 0.05 Hz to fr = 307.34 ± 0.05 Hz, and
it reduced the oscillator’s quality factor from Q ∼ 9000
to Q ' 7200 for a pressure P ≤ 10−5 torr. The experi-
ments were performed at P ' 10−5 torr and the motion
of the plate was detected by the change in capacitance
between the plate and the underlying electrodes as in
[13, 17, 18]. Calibration of the MTO was performed by
using the electrostatic interaction between the Au-coated
test and source masses [17]. The calibration was per-
formed with the source mass stationary, and the distance
was monitored and measured using a two-color interfer-
ometer (with a sensitivity of 0.2 nm). After perform-
ing the calibration, the potential difference between the
sphere and plate was adjusted to minimize the electro-
static interaction. With this MTO a thermally limited
minimum detectable force Fmin(fr) ∼ 6 fN/

√
Hz was cal-

culated when working at resonance at 300 K[16]. Since fr
is a function of separation due to the non-linear nature of
the Casimir interaction, it was continuously monitored.

A five axis stepper-motor-driven positioner and a three
axis piezoelectrically driven system were used to bring
the test mass in close proximity (z ∈ [200, 1000] nm)
to the source mass. The source mass was fabricated
by depositing a dCr = 10 nm thick layer of Cr on a
1 inch diameter 100 µm thick [100] oriented Si wafer. A
dtm = 2.10± 0.02 µm thick layer of Si was deposited on
top of the Cr covered Si wafer. Using conventional pho-

tolithography, a photoresist structure consisting of con-
centric sectors was defined in the Si. The Si not cov-
ered by the photoresist was removed down to the Cr
layer using CF4 reactive ion etching. After removing
the photoresist, Au was thermally evaporated and the
structure mechanically polished to expose the Si sectors.
This process defined a structure with a surface consist-
ing of a center circle of Au with a radius R1 = 4 mm,
then a 200 µm wide ring with 50 sectors of Au/Si, and
a 150 µm wide Au ring. The sequence of 200 µm wide
rings with Au/Si sectors and 150 µm wide Au rings was
repeated with the number of Au/Si sectors increasing
by 25 for each concentric ring until the last one with
300 sectors, which was located at R11 = 7.5 mm. This
structure was glued with NOA61 UV curing cement to
a BK7 Schott glass flat with the original Si wafer ex-
posed. The wafer was etched away using KOH, and then
a dAu = 150±3 nm layer of Au was deposited by thermal
evaporation. The exposed Au surface was characterized
by white light interferometry (WLI) and atomic force
microscopy (AFM), which showed an optical quality film
with no memory of the underlying structure. The 1024 ×
1024 AFM images obtained over different 10 µm ×10 µm
regions yielded position-independent 60 nm peak-to-peak
topographic roughness. Excluding a few isolated spikes
∼ 50 nm tall and about 100 nm across, the sample has
a rms roughness of 1.5 nm. The disk was then mounted
on an air bearing spindle. It was optically verified that
the center of the disk and the axis of rotation of the spin-
dle coincided to better than ∆r ∼ 10 µm. The flatness
and alignment of the sample were checked in-situ using a
fiber interferometer (response time 10 ms). It was found
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FIG. 1. (Color online) Schematic of the experimental setup
(not to scale). The Au-coated sphere is glued to the oscilla-
tor. Three regions with n = 5, 8, 11 Au-Si sectors are shown.
The actual sample has n = 50, 75, · · · , 300. The {x, y} plane
defines the plane of rotation of the spindle. cl is the line
where all the different regions with Au-Si sectors coincide. θ
is the instantaneous axis of rotation, φ = ωt is the angle of
rotation. The distance z is measured from the vertex of the
spherical test mass to the source mass. r is the distance from
the vertex of the test mass to the center of the source mass, o.
Displacements ∆r between o and the axis of rotation are not
shown for clarity. For comparison, a schematic of the setup
used in [13] is shown.
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that the surface of the sample was perpendicular to the
axis of rotation to better than z0 = 20 nm at R11 when
rotating the disk at ω = 2π rad/s.

The air bearing spindle worked under a constant air
flow of several liters/min. The top of the source mass was
at a distance D = 4 cm from the air exhaust. To prevent
air leaks into the chamber, the spindle was mounted with
a circular skirt which rotated with the spindle. The seal
between the skirt and the vacuum chamber was provided
by high molecular weight oil. Oil contamination inside
the chamber was precluded using chilled water refrigera-
tion (T = 10◦ C) on a system of baffles and traps.

With the sphere placed at Ri + 100 µm (with n
Au/Si sectors) the air bearing spindle was rotated at
ωr = 2πfr/n. In this manner, a force arising from the
potential given in Eq. (1) would have manifested itself at
fr even though there were no parts moving at fr. The
Newtonian gravitational attraction between the sphere
and the structured sample yields a force FN ∼ 10−20 N,
undetectable by our system. Hence an integration of only
the Yukawa-like part of Eq. (1) over the geometry of the
sample is necessary. Disregarding finite size effects across
the width of the ring [18], the expected difference when
the sphere is over a Au or Si sector is [13, 19]

∆Fh(z) = −4π2Gαλ3e−z/λRKtKs, (2)

Kt =
[
ρAu − (ρAu − ρCr) e

−tAu/λ

− (ρCr − ρs) e−(tAu+tCr)/λ
]
,

Ks =
[
(ρAu − ρSi) e−(dAu+dCr)/λ

(
1− e−dtm/λ

)]
,

where Kt (Ks) is a term associated only with the layered
structure of the test (source) mass, ρs, ρCr, ρAu, and ρSi
are the sapphire, Cr, Au and Si densities respectively.

The setup is optimized to select the first harmonic of
the force associated with the angular distribution of the
sample. Other harmonics and all forces with different
angular dependences are outside of the resonance peak
of the MTO and consequently “filtered” by the sharp
∆f ' 40 mHz resonance peak of the oscillator.

Results obtained by doing the experiment over the
n = 300 ring are shown in Fig. 2. These results were
obtained by using a lock-in detection technique at fr. A
mark on the outside of the source mass coincident with
the cl line in Fig. 1) was used to define the origin of
the phase. Many features are worth noting: (i) Increas-
ing the integration time τ decreases the random noise
of the measured force, as expected. (ii) At separations
z ≤ 300 nm the statistical noise is larger than the min-
imum detectable force. This happens in a region where
the Casimir force is large. At larger separations, the sta-
tistical noise is close to the minimum detectable force.
It was also observed that this noise was independent of
the angular frequency of the disk (for ω

2π ∈ [0.2, 20] Hz).
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FIG. 2. (Color online) (a) Lock-in amplified detection of the
signal with an integration time τ = 1 s at a separation z =
200 nm. (b) Same as in (a) for τ = 3000 s. (c) Standard
deviation for 15 different realizations of the experiment with
τ = 3000 s as a function of separation. The horizontal dashed
line is the statistical noise in the amplitude of the oscillator
at T = 293 K (which was also measured over τ = 12, 000 s
at z = 3 µm). (d) Measured interaction as a function of
separation. The two data sets were obtained on top of the
region with n = 300 (•) and over a section of the sample
without Si at a radius r = 8 mm (2). The error bars represent
the standard deviation for 10 repetitions with τ = 3000 s.

(iii) There is a separation-dependent net force measured,
which is practically independent of the radial position of
the sphere over the rotating disk. This signal increases
proportionally to ω as the disk is rotated at higher sub-
harmonics of ωr = 2πfr.

Point (iii) indicates an incomplete subtraction of back-
ground forces. Kelvin probe force microscopy was per-
formed in the sample over different 5 × 5 µm2 regions.
This contribution is not of electrostatic origin. It was
observed that the main potential islands had a charac-
teristic size ` ∼ 200 nm with Vrms < 5 mV. Since the ex-
perimental system provides a sharp filtering of the signal
at ωr, this implies the electrostatic contribution to the
signal at ωr would be undetectable, ∆Fel(z) ≤ 10−17 N
[28]. Furthermore, if detected, the electrostatic signal
would have a radial dependence when the disk is rotated
at constant frequency [28], which was not observed.

Variations in the separation between test and source
masses could yield the observed background through the
separation dependence of the Casimir force FC(z) ∝ z−α

[11]. FC(200 nm) = 34 pN and α = 2.78 were exper-
imentally determined in the actual configuration. The
observed signal at ωr = nω must appear through z(t).

The observed signals are consistent with the axis
of rotation of the spindle having both an impulse-like
∆θ1 once per revolution and a random wobbling. The
impulse-like wobble has been identified by analyzing its
frequency dependence. Varying the frequency of the spin-
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dle the harmonic components of the signal observed at
ωr are consistent with a once per revolution impulse-like
signal. The random wobbling is observed to have white-
noise characteristics, 〈θ2(τ)θ2(0)〉 = Θ2δ(τ), where Θ is
a constant, in the range of frequencies investigated, be-
tween 0.1 and 20 Hz. This random noise increases the
minimum detectable force from ∼ 6 to ∼ 12 fN/

√
Hz at

z = 200 nm. Associated with any ∆θ, there is a change
in separation δz ∼ Dδθ between the sphere and the ro-
tating sample, which induces a change in the Casimir
force. Since in our experiment D ∼ 4 cm, it follows that
Θ ∼ 5×10−10 rad and ∆θ1 ≤ 10−7 rad. Neither of these
angular deviations can currently be measured directly.

The lack of parallelism between the normal to the disk
and the rotational axis leads to the time-varying sep-
aration z(t) = zs + z0 cos(ωt). Its contribution ∆Fpar

at ωr enters through the nonlinear dependence of the
Casimir force on the separation. A Taylor’s expansion
of FC(z) ∝ z−α shows that the contribution at ωr is
attenuated by ∼ (z/z0)n, making it unobservable for all
n in our setup. This is also the case for precession of
the spindle. Similarly, the lack of flatness of the sam-
ple generates the angular-position-dependent separation
z(φ), which was measured using white light interferome-
try (see inset in Fig. 3). Inserting these data into FC(z)
yields a contribution ∆Ftop < 0.05 fN.
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FIG. 3. (Color online) Measured interaction as a function
of separation obtained on top of the region with n = 300.
(•) quadrature signal; (2) in phase signal (see text). Errors
represent the standard deviation for 10 repetitions with τ =
3000 s. Inset: The sample’s topography, z(φ) over the R11

circle, obtained by white light interferometry.

The effect of the once-per-revolution ∆θ1 was mini-
mized in the following way: ∆θ1 happens at a character-
istic φo. As the disk is positioned for the first time on the
spindle, there is an unknown angle φx between the line
cl and the line defined by φo. When the sphere is posi-
tioned over a region with only Au in the source mass, a
signal with a non-zero phase is detected (recall the zero-
phase is defined at cl). The sample is then very carefully
repositioned over the disk until the phase of the detected
signal is zero. In this situation φx = 0 is assumed.

An approach where the zero of the phase is redefined

could also be used, however the method of repositioning
the sample is superior to redefining the zero of the phase.
While it is expected that the signal described by Eq. (2) is
in quadrature (i.e. it should be an odd signal with respect
to φ), in principle, it is not known if the model is correct.
The data shown in Fig. 3 were obtained in this manner.
Furthermore, the same component of the signal in phase
was measured with the sphere placed at any radii. It was
determined that the hypothetical force (in quadrature)
is consistent with zero within the experimental error for
any radii Rn.

The ∆r shift between the axis of rotation and the cen-
ter of the source mass would also yield a signal at ω if
∆Fh were observable, although it would be attenuated by
Ri/∆r at ωr. Similarly, finite size effects as the Au/Si
interface of the source mass moves under the test mass
are negligible at ωr when compared with the statistical
errors.
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FIG. 4. (Color online) Values in the λ, α phase-space excluded
by experiments. The red curve represents the limits obtained
in this work. Previous limits from Riverside [21], IUPUI [9,
13], Yale [22], Stanford [23], Washington [24] and theoretical
predictions [1, 2, 25–27] are also shown.

While the relevant error is ∆Frand, the overall error
was obtained as an addition of the random and sys-
tematic errors ∆F = ∆Frand + ∆Fsyst. The individ-
ual systematic errors described in this paper were con-
sidered to be independent to obtain ∆Fsyst. F (z) in
Fig. 3 associated with the hypothetical force is consis-
tent with zero and was used to establish new limits in
{λ, α} space at the 95% confidence level. The envelope
of the curves where the first harmonic of Fh(z) is com-
pared with max{|F (z) + 2∆F (z)|,|F (z) − 2∆F (z)|}, is
shown in Fig. 4. The new limits obtained with the intro-
duced “Casimir-less” measurement technique represent a
significant improvement over previous experiments: new
boundaries have been established in a spatial range cover-
ing more than 3 orders of magnitude (λ ∈ [30, 8000] nm),
with improvements as large as 103 in Yukawa-like correc-
tions to Newtonian gravity at λ = 300 nm.
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[14] D. López, R. S. Decca, E. Fischbach, and D. E. Krause,
Bell Labs Technical Journal, 10(3), 61 (2005).

[15] R. Matloob and H. Falinejad, Phys. Rev. A 64, 042102
(2001). While the model presented is not exact, it is ac-
curate to within a few percent, sufficient for the purposes
of this work.

[16] Away from resonance, the electronic background imposes
a constraint on the minimum detectable force. In our case
it is ∼ 0.5 pN.
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