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Quantum annealing correction (QAC) is a method that combines encoding with energy penalties
and decoding to suppress and correct errors that degrade the performance of quantum annealers in
solving optimization problems. While QAC has been experimentally demonstrated to successfully
error-correct a range of optimization problems, a clear understanding of its operating mechanism
has been lacking. Here we bridge this gap using tools from quantum statistical mechanics. We
study analytically tractable models using a mean-field analysis, specifically the p-body ferromagnetic
infinite-range transverse-field Ising model as well as the quantum Hopfield model. We demonstrate
that for p = 2, where the phase transition is of second order, QAC pushes the transition to increas-
ingly larger transverse field strengths. For p ≥ 3, where the phase transition is of first order, QAC
softens the closing of the gap for small energy penalty values and prevents its closure for sufficiently
large energy penalty values. Thus QAC provides protection from excitations that occur near the
quantum critical point. We find similar results for the Hopfield model, thus demonstrating that our
conclusions hold in the presence of disorder.

PACS numbers: 03.67.Ac,03.65.Yz

Quantum computing promises quantum speedups for
certain computational tasks [1, 2]. Yet, this advantage is
easily lost due to decoherence [3]. Quantum error correc-
tion is therefore an inevitable aspect of scalable quantum
computation [4]. Quantum annealing (QA), a quantum
algorithm to solve optimization problems [5–10] that is
a special case of universal adiabatic quantum comput-
ing [11–15], has garnered a great deal of recent attention
as it provides an accessible path to large-scale, albeit
non-universal, quantum computation using present-day
technology [16–19]. Specifically, QA is designed to ex-
ploit quantum effects to find the ground states of classical
Ising model Hamiltonians HC by “annealing” with a non-
commuting “driver” Hamiltonian HD. The total Hamil-
tonian is H(t) = Γ(t)HD +HC, and the time-dependent
annealing parameter Γ(t) is initially large enough that
the system can be efficiently initialized in the ground
state of HD, after which it is gradually turned off, leav-
ing only HC at the final time. QA enjoys a large range
of applicability since many combinatorial optimization
problems can be formulated in terms of finding global
minima of Ising spin glass Hamiltonians [20, 21]. Being
simpler to implement at a large scale than other forms of
quantum computing, QA may become the first method
to demonstrate a widely anticipated quantum speedup,
though many challenges must first be overcome [22, 23].

While QA is known to be robust against certain forms
of decoherence provided the coupling to the environment

is weak [10, 24–28], error correction remains necessary
in order to suppress excitations out of the ground state
as well as errors associated with imperfect implemen-
tations of the desired Hamiltonian [29]. Unfortunately,
unlike the circuit model of quantum computing [30], no
accuracy-threshold theorem currently exists for QA or for
adiabatic quantum computing. Nevertheless, error sup-
pression and correction schemes have been proposed [31–
36] and successfully implemented experimentally [37–43],
resulting in significant improvements in the performance
of special-purpose QA devices.

Here we focus on the quantum annealing correction
(QAC) approach introduced in Ref. [37], which assumes
that only the classical Hamiltonian HC can be encoded.
QAC introduces three modifications to the standard QA
process. First, a repetition code is used for encoding a
qubit into K (odd) physical data qubits, i.e., K indepen-

dent copies of HC are implemented given by H
(k)
C , k =

1, . . . ,K. Second, a penalty qubit is added for each of
the N encoded qubits, through which the K copies are
ferromagnetically coupled with strength γ > 0, resulting
in a total QAC Hamiltonian of the form:

H/J = −
K∑
k=1

(
HC
k + ΓHD

k + γHP
k

)
, (1)

where J is an overall energy scale which we factor out
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FIG. 1. The mean field phase diagram for p = 2 for different
γ values. The lines represent second order PTs encountered
along the anneal from large to small Γ values. For a fixed
temperature, the critical point Γc increases with γ. At zero
temperature, Γc =∞ for γ > 0.

to make the equation dimensionless. The penalty Hamil-
tonian HP =

∑K
k=1H

P
k represents the sum of stabilizer

generators [44] of the repetition code, and it penalizes
disagreements between the K copies. This allows for the
suppression of errors that do not commute with the Pauli
σz operators. Third, the observed state is decoded via
majority vote on each encoded qubit, which allows for
active correction of bit-flip errors.

It was shown in Refs. [37–40] that using QAC on a
programmable quantum annealer [16–19] significantly in-
creases the success probability of finding the ground state
after decoding, in comparison to boosting the success
probability by using the same physical resources of K+1
copies of the classical Hamiltonian. This empirical ob-
servation was explained using perturbation theory and
numerical analysis of small systems, where it was ob-
served that QAC both increases the minimum gap and
moves it to an earlier point in the quantum anneal (i.e.,
higher Γ), and recovers population from excited states
via decoding.

A deeper understanding of this striking success prob-
ability enhancement result is desirable. We tackle this
problem using mean-field theory, which gives us an an-
alytical handle beyond small system sizes. Specifically,
we are able to calculate the free energy associated with
the QAC Hamiltonian, and in turn study the phase di-
agram as a function of penalty strength and transverse
field strength. We do this by first studying QAC in the
setting of the p-body infinite-range transverse-field Ising
model, then include randomness by studying the p-body
Hopfield model.

p-body Infinite-Range Ising Model encoded using
QAC.—In this model the ith physical qubit is replaced
by the ith encoded qubit, comprising K physical qubits
and a penalty qubit. The terms in the QAC Hamilto-
nian in Eq. (1) are the infinite-range classical Hamilto-

nian HC
k = N (Szk)

p
, where Szk ≡ 1

N

∑N
i=1 σ

z
ik, and the
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FIG. 2. The mean field phase diagram for p = 4 for different
γ values. The lines represent first order PTs. Inset: a mag-
nification of the low temperature region to show the presence
of two first order PTs for a particular range of T and γ. At
zero temperature, there exists a value γc such that for γ > γc,
the first order PT is avoided completely, as can be seen by
the case γ = 1.5.

driver and penalty Hamiltonians are given by

HD
k =

N∑
i=1

σxik , HP
k =

N∑
i=1

σzikσ
z
i0 , (2)

where σxik and σzik denote the Pauli operators on physical
qubit k of encoded qubit i, and σzi0 acts on the penalty
qubit of encoded qubit i. Unlike in Refs. [37, 38], we do
not include a transverse field on the penalty qubit, since
this allows us to keep our analysis analytically tractable.

By employing the Suzuki-Trotter decomposition and
the static approximation (constancy along the Trotter
direction) [45–48], we find that the free energy F is given
in the thermodynamic limit (N →∞) by

F/J = (p− 1)

K∑
k=1

mp
k −

1

β
ln
(
e
∑K

k=1 β
√

(γ−pmp−1
k )2+Γ2

+ e
∑K

k=1 β
√

(γ+pmp−1
k )2+Γ2

)
(3a)

β→∞−→
K∑
k=1

[
(p− 1)mp

k −
√

(γ + p|mk|p−1)2 + Γ2
]
,

(3b)

where mk is the Hubbard-Stratonovich field [49] that also
plays the role of an order parameter, and β = (kBT )−1 is
the inverse temperature. This free energy for the infinite-
range model appropriately reflects quantum effects, i.e.,
the eigenstates are not classical product states, as further
commented on in Sec. I of the Supplementary Material
(SM). The dominant contribution to F comes from the
saddle-point of the partition function Z = exp (−βNF ),
which provides a consistency equation for mk. The solu-
tion that minimizes the free energy has all K copies with
the same spin configuration, i.e., mk = m ∀k, which is the
stable state. Metastable solutions exist where mk = m
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FIG. 3. Results for p = 4, T → 0, and J = 1.(a) The free energy for γ = 0 at the critical point Γc = 1.185. The two degenerate
global minima are at m = 0 and 0.943. (b) The free energy for γ = 0.5 at the critical point Γc = 1.847. Now the two degenerate
global minima are at m = 0.328 and 0.844. For γ = 0.5, the symmetric point m = 0 is metastable and the global minimum
has non-zero magnetization even for large Γ. This minimum continuously moves to m = 0.328 along the anneal, and then
discontinuously jumps to m = 0.844 at Γc = 1.847. (c) The coefficient C associated with the scaling of the gap in the symmetric
subspace (∆ ∼ CN ). C increases monotonically towards unity as a function of γ.

for k = 1, . . . , κ and mk = −m for k = κ + 1, . . . ,K,
which represent local minima and are decodable errors
provided κ > K/2. Additional details of the derivation
of F can be found in the SM.

When p = 2, it is well known that for γ = 0 (where
the K copies are decoupled) there is a second order PT
from a symmetric (paramagnetic) phase to a symmetry-
broken (ferromagnetic) phase, at Γc = 2 [50]. However,
as shown in Fig. 1, as γ increases, the PT is pushed to
increasingly larger Γc values for fixed β, until, as β →∞
also Γc → ∞ for any γ > 0. This means that in the
zero temperature limit the PT is effectively avoided for
any γ > 0, while for T > 0 as γ is increased the system
spends an increasingly larger fraction of the anneal in the
symmetry-broken phase.

For p > 2, there is a first order PT for γ = 0 [50].
We show the p = 4 phase diagram in Fig. 2, for different
values of γ. We find several interesting regimes that we
observe generically for p > 2. In the zero temperature
limit, there is a single first order PT between m = 0
and m = mlarge that persists even for small γ, and the
associated Γc increases monotonically as a function of γ,
as Γc ≈ 1.4γ + 1.2. However, the PT disappears for γ >
γc(p), where γc(p) ≈ 0.46p− 1 (see the SM). In general,
such a result should be taken as an indication that the
penalty is too strong, in the sense that it overwhelmed
HC and has potentially turned a hard instance into an
easy one.

For T, γ & 0 we observe two first order PTs. The
first is between m = 0 and m = msmall, followed by a
PT between msmall and mlarge at a smaller Γ. If γ is
made larger than a critical value of γc2 at these low tem-
peratures, then only the former PT survives, and msmall

smoothly moves to mlarge as Γ is decreased. Further de-
tails are provided in the SM.

The penalty term also changes the first order PT quan-
titatively. In Figs. 3(a) and 3(b), we show the free ener-

gies at the critical points for γ = 0 and 0.5 in the T → 0
limit. The penalty term reduces the width and the height
of the potential barrier, thus increasing the probability
that the system will tunnel from the left well (small m;
global minimum for Γ > Γc) to the right well (large m;
global minimum for Γ < Γc). This is similar to the reduc-
tion and elimination of the barrier heights when different
driver Hamiltonians are used [51–53].

We can relate the reduction of the width and the height
of the mean-field free energy barrier to the softening of
the energy gap between the ground state and the first ex-
cited state. We use our earlier finding that in the T → 0
limit the penalty qubits are locked into alignment with

the ground state of H
(k)
C . This configuration of penalty

qubits defines a particular sector of the Hilbert space of
H, which contains the global ground state of H. We can
thus confine our analysis to one of the two corresponding
sectors, i.e., where σzi0 = +1 ∀i; at T = 0 and in the
absence of a transverse field there is no mechanism to
flip the penalty qubits. This decouples the K copies and
the penalty becomes a global field in the z-direction. The
Hamiltonian H restricted to this sector is invariant under
all permutations of the logical qubit index i. Therefore, if
we initialize the system in this symmetric subspace it will
remain there under the unitary evolution. This symmet-
ric subspace is spanned by the Dicke states (eigenstates
of the collective angular momentum operators with max-
imal total angular momentum), and the dimensionality
of each of the K copies is reduced from 2N to N + 1 (see
the SM).In the Dicke state basis the Hamiltonian is tridi-
agonal and can be efficiently diagonalized [47]. Doing so
for sufficiently large N ’s allows us to extract the scaling
of the minimum gap ∆ in the symmetric subspace. We
show for the case of p = 4 that ∆ ∼ CN , with C given in
Fig. 3(c). As γ increases C increases as well, asymptoting
to 1 for large γ, at which point the gap is constant. This
softening of the closing of the gap with γ is obviously a
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(a) p = 2, R = 0.01N , K = 3
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(b) p = 4, R = 0.01N3, K = 3

FIG. 4. (a) The q value at the free energy extremum for the
Hopfield many-patterns case with p = 2, R = 0.01N , and
K = 3 under the replica symmetric ansatz. For γ 6= 0, the
system remains in the symmetry-broken phase at least up to
Γ = 10, while for γ = 0 the symmetric phase is present for
Γ & 2.2. (b) The m value at the free energy extremum for
the Hopfield many-patterns case with p = 4, R = 0.01N3 and
K = 3. For γ = 0, there is a first order transition around
Γ = 1.6, and the extremum jumps discontinuously from m =
0.86 to m = 0. For γ = 0.5, there is again a discontinuous
jump in the value of m but it does not reach m = 0. For
γ = 1, 2 a discontinuity is not observed suggesting that the
first order PT disappears or is at least weakened considerably
by the penalty term.

desirable aspect of QAC, since it reduces the sensitivity
to excitations and in turn implies an enhancement of the
success probability of the QA algorithm.

Hopfield model encoded using QAC.—The ferromag-
netic model considered above has a trivial classical
ground state. To understand whether a more challeng-
ing computational problem exhibiting randomness affects
our conclusions, we now consider the quantum Hopfield
model [54, 55], but limit ourselves to the T = 0 case
for simplicity. The encoded Hamiltonian of the Hop-
field model is again given by Eq. (1), and the driver and
penalty Hamiltonians are given in Eq. (2). The classical

Hamiltonian is HC
k = N

∑R
µ=1

(
1
N

∑N
i=1 ξ

µ
i σ

z
ik

)p
, where

the R “patterns” ξµi (indexed by µ) take random values
±1. The Hubbard-Stratonovich field is now labeled by

mµ
k . Note that the p-body infinite-range Ising model is

the special case with R = 1 and ξµi ≡ 1.
Let us first consider the case of a finite number of pat-

terns, i.e., mµ
k = mk for 0 ≤ µ ≤ l and mµ

k = 0 for
µ ≥ l+1. We then find that the free energy is minimized
by l = 1 for all Γ (see SM) and is identical to Eq. (3b);
thus the conclusions obtained above for the uniform fer-
romagnetic case apply in this case as well.

Next, we consider the “many-patterns” case, where the
number of patterns scales as R = O(Np−1) (ensuring ex-
tensivity). In this case, the free energy under the ansatz
of replica symmetry [56] is a function of two order param-
eters: the one- and two-point spin correlation functions
m and q. Both order parameters are relevant for deter-
mining the phase, and hence the complexity, of the Ising
Hamiltonian. Details can be found in the SM.

Our results are illustrated in Fig. 4. For p = 2 and
γ = 0, the extremum of the free energy is at the sym-
metric point (m, q) = (0, 0) for large Γ and moves con-
tinuously to the symmetry-broken phase with nonzero q
as Γ goes below Γc. For finite γ, the system is in the
symmetry-broken phase even for large Γ and is never at
(m, q) = (0, 0) [see Fig. 4(a)]. For p = 4 and γ = 0, there
is a discontinuous jump in (m, q) as a function of Γ, indi-
cating the presence of a first-order PT. For finite values of
γ, the discontinuity is smaller in magnitude, and it even-
tually disappears as γ increases [see Fig. 4(b)]. These
qualitative features are the same as those observed in the
uniform ferromagnetic case above. Therefore, QAC im-
proves the success probability of the QA algorithm even
in the presence of certain types of randomness. We note
that replica symmetry breaking may change some of the
results [56]. For example, the PT for p = 2 may persist
up to a finite value of γ but will disappear for sufficiently
large γ. We can trust at least the qualitative aspects
of our result that effects of PTs become less prominent
under the presence of the penalty term, which would en-
hance the performance of QA.

Conclusions.—We have demonstrated that in the ther-
modynamic limit, depending on the penalty strength γ,
QAC either softens or prevents the closing of the mini-
mum energy gap. In the latter case the associated PT
is avoided in the T → 0 limit, while in the T > 0 set-
ting only the conclusion that the gap-closing is softened
survives. Indeed, it is unreasonable to expect that QAC
changes the computational complexity class of the opti-
mization problem of the corresponding QA process. This
would help to explain the increase in success probability
witnessed in QAC experiments [37–40].

An important aspect of QAC that is absent in the anal-
ysis presented here is the decoding step, which is known
to lead to an optimal penalty strength [37–40]; this aspect
may emerge as we attempt to keep decodable metastable
solutions closer to the global minimum than undecodable
solutions, and will be addressed in future work.
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