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Strong electron interactions can lead to a variety of broken-symmetry phases in monolayer graphene. In the
quantum Hall regime, the interactions effects are enhanced by the formation of highly degenerate Landau levels,
catalyzing the emergence of such phases. Recent magnetotransport studies show evidence that the ν = 0 quan-
tum Hall state of graphene is in an insulating canted antiferromagnetic phase with the Néel vector lying within
the graphene plane. Here, we show that this Néel order can be detected via two-terminal spin transport. We find
that a dynamic and inhomogeneous texture of the Néel vector can mediate nearly dissipationless (superfluid)
transport of spin angular momentum polarized along the z axis, which could serve as a strong support for the
antiferromagnetic scenario. The injection and detection of spin current in the ν = 0 region can be achieved using
the two spin-polarized edge channels of the |ν| = 2 quantum Hall state. Measurements of the dependence of the
spin current on the length of the ν = 0 region would provide a direct evidence for spin superfluidity.

PACS numbers: 73.43.-f, 75.70.Ak, 75.76.+j

Introduction. Unique electronic properties of graphene (a
monolayer of graphitic carbon) stem from its hexagonal crys-
tal structure, giving rise to relativistic effects at electronic ve-
locities well below the speed of light [1]. Graphene is the
thinnest and the strongest of 2D materials, and an outstand-
ing electrical and heat conductor, holding great promise as a
building block for future electronic devices [2]. A hallmark
of graphene’s electronic properties is manifested in magneto-
transport. For instance, graphene’s integer quantum Hall (QH)
states with anomalous filling fractions ν = ±4(n + 1/2) [1, 3]
directly reflects the weakly-interacting massless relativistic
nature of its low-energy excitations and the fourfold degener-
acy associated with the electron spin and valley isospin. The
valley degree of freedom distinguishes between the two in-
equivalent “Dirac points” in the Brillouin zone where the con-
duction and valence bands of graphene touch [4].

Under high enough magnetic fields, electron-electron inter-
actions can give rise to additional QH states [5, 6], including
the ν = 0 state at the charge neutrality point. The appear-
ance of the ν = 0 QH state indicates that electron-electron
interactions can induce SU(4)-symmetry breaking within the
spin-valley space and lift the fourfold degeneracy of the zeroth
Landau level [7, 8]. A challenge is to understand precisely
how this symmetry is broken. Charge-transport experiments,
utilizing both the two-terminal and Hall-bar geometries, sug-
gest that the bulk and edge charge excitations for the state are
gapped [5]. Furthermore, the recent observation of gapless
edge-state reconstruction in tilted magnetic field [6] is consis-
tent with the scenario where the ν = 0 ground state is a canted
antiferromagnetic (CAF) insulator [7]. In the CAF state, the
spins SA on sublattice A and the spins SB on sublattice B have
different relative orientations; in the presence of an external
magnetic field B normal to the graphene plane (defined to
be the xy plane), the total spin SA + SB points antiparallel to
the field while the Néel vector SA − SB lies in the graphene
plane. Despite these recent developments, a more direct ex-

perimental verification of this CAF scenario would be highly
desirable.

Essentially disjoint from the field of graphene QH physics,
the field of spintronics is witnessing an increasing interest in
realizing spin transport through magnetic insulators via co-
herent collective magnetic excitations, which allows for su-
perfluid (nearly dissipationless) transport of spin [9, 10]. A
recent theoretical work has shown that such superfluid spin
transport can be realized in antiferromagnetic insulators using
a two-terminal device [10]: by laterally attaching two strongly
spin-orbit-coupled normal metals at two opposite ends of the
insulator, both spin injection and detection could be achieved
via electrical means using direct and inverse spin Hall ef-
fects. Transplanting this idea to the purported ν = 0 CAF
state in graphene, superfluid transport of spin polarized along
the z axis could be supported by the CAF via a dynamic
Néel texture that rotates about the z axis within the graphene
plane [10]. The observation of such spin superfluidity would
constitute a direct evidence for the CAF scenario. Moreover,
graphene is an ideal candidate for the observation of super-
fluid transport because spin anisotropy should be extremely
small in this system.

Superfluid spin transport. We begin with a heuristic discus-
sion of how superfluid spin transport through the CAF state
can be achieved. We propose a device shown in Fig. 1(a),
where the central CAF region is sandwiched by two ν = −2
QH regions; we ignore the effects of thermal fluctuations of
spins in the CAF. Spin injection into the CAF is achieved us-
ing the two co-propagating edge channels of the left ν = −2
region. Based on the theory of QH ferromagnetism [11] these
edge channels, away from the injection region [shaded in
green, which includes the vertices labeled by a and b (rep-
resented by red circles in Fig. 1(a)), and the line junction link-
ing the two vertices], are in oppositely polarized spin states
(labeled ↑, ↓) collinear with the external field (along the z
axis). The two edge channels are expected to undergo very lit-
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FIG. 1. (color online) Proposed setup for realizing and detecting
superfluid spin transport through the ν = 0 QH state of graphene.
(a) Top view of the graphene Hall bar. Yellow regions are top gates
and the grey regions denote ohmic contacts held at their respective
voltages. Two independently biased spin-polarized edge channels on
opposite sides of the ν = 0 region are used to inject and detect spin
current flowing through the CAF. The spin states of the ν = −2 edge
channels are polarized collinearly to the z axis outside of the injec-
tion and detection regions. (b) A cartoon energy diagram at a ν = 0
to ν = −2 transition region (across the bold red line). The spin axes
are viewed from the side along the y direction. In the ν = −2 region,
energies of the two spin states, oppositely polarized along the z axis,
are drawn; the Zeeman effect gives an energetic advantage to the
spin-down state. In the ν = 0 region, the two occupied branches of
the CAF spectrum are shown. There, an external field in the positive
z direction results in a ferromagnetic canting of spins in the negative
z direction inside the antiferromagnet. Spin orientations of the chiral
edge modes are intermediate between the up and down spin eigen-
states within the ν = −2 region (left side) and the canted spins within
the CAF (right side). The black lines are merely a rough guide for the
energies of the spin states in the transition region. The above illus-
tration does not contain two other branches of the spectrum that are a
part of the zLL but not essential for the edge physics in the transition
region.

tle equilibration outside the injection region [12], so that they
can be independently biased by the reservoirs from which they
originate, i.e., Vσ.

Fig. 1(b) shows a cut across the bold red line in Fig. 1(a)
viewed from the side along the y direction. Due to an applied
field B normal to the graphene plane and antiferromagnetic
correlations induced by electron interactions, spins SA on sub-
lattice A and SB on sublattice B in the CAF state lie nearly
antiparallel within the graphene plane with a slight canting
out of the plane by an angle determined by the ratio between
the valley isospin anisotropy and Zeeman energy scales [8].
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FIG. 2. (color online) A cartoon of the CAF in a dynamic superfluid
state. The Néel vector rotates within the graphene plane about the
z axis with a global precession frequency Ω. The static contribution
to spin current Īs ∝ V− = V↑ − V↓ is injected into the CAF while
the dynamic (spin-pumping) contribution is ∝ Ω pumps spin current
back out into the edge. Two analogous contributions exist on the
detection side.

As shown in panel (b), the spin quantization axes of the edge
states along the line junction may deviate away from the ±z
directions due to the effective field created by the neighboring
CAF. We label these canted spin states by ⇑ and ⇓.

When V↑ > V↓, inter-channel scattering may occur inside
the injection region, entailing redistributed charge currents, I↑
and I↓, emanating from the region and a net loss of spin (polar-
ized along the z axis) inside the region. Neglecting any exter-
nal sources of spin loss in the injection region (e.g., spin-orbit
coupling, magnetic impurities, etc.), the net spin lost in the
edge should be absorbed by the CAF, leading to the injection
of spin current (hereafter always defined to be the component
polarized along the z axis) into the CAF. This will induce the
CAF into a dynamic steady-state, in which the local Néel vec-
tor in the CAF rotates about the z axis with a global frequency
Ω (see Fig. 2) [10]. The dynamic Néel texture will, in turn,
pump spin current [13] out into the edge channels in the detec-
tion region, resulting in the transport of spin from the injection
to the detection side [the detection region, involving vertices
a′ and b′, is shaded in blue in Fig. 1(a)]. We initially leave the
two detection channels unbiased, i.e., V ′

↑
= V ′

↓
such that the

spin current entering the detection region is zero. However,
the injection of spin current from the CAF into the detection
edge will generate a redistribution of charges on the two chan-
nels, and result in I′

↑
, I′
↓
. Therefore, the spin current ejected

at the detection edge is directly determined by measuring the
spin current exiting the detection region.

Theory and results. We now place the above heuristic dis-
cussion on more quantitative grounds. The discussion below
closely follows Ref. 10. Once the dynamic steady-state is es-
tablished in the CAF, the spin current Is entering the CAF at
the injection edge has two contributions: Is = Īs + is, where
Īs is the spin current injected into a static CAF in equilibrium,
and is is the spin-pumping (dynamic) contribution describing
spin current pumped back out to the edge due to the nonequi-
librium Néel dynamics (see Fig. 2) [13]. The static contribu-
tion, within linear-response, reads Īs = (~/2e)[gQ(V↑ − V↓) −
(Ī↑ − Ī↓)], where gQ ≡ e2/h and e > 0 is the magnitude of
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the electron charge; Īσ denotes the charge currents emanating
from the injection region in the static limit. Due to charge
conservation, and the fact that equally-biased edge channels
leads to equal outgoing charge currents (i.e., V↑ = V↓ imply-
ing Ī↑ = Ī↓), the charge currents emanating from the injection
region can be written generally as Īσ = gQ[V++σ(1−γ)V−]/2,
where V± = V↑ ± V↓ and σ = ± corresponds to the ↑ and ↓
channels, respectively. The real parameter 0 ≤ γ ≤ 1 charac-
terizes the strength of inter-channel scattering in the injection
region (it is explicitly computed using a simple microscopic
model later in this work). The limit of no inter-channel scat-
tering corresponds to γ = 0, while the limit of strong scatter-
ing (full equilibration between the channels) corresponds to
γ = 1. Inserting Īσ into the expression for Īs, one obtains

Īs =
~

2e
gQγV− . (1)

The dynamical contribution is follows from Eq. (1) via On-
sager reciprocity. To see this, we first define two continuum
variables in the CAF that are slowly varying on the scale of the
magnetic length: n(x) and m(x), n(x) being the unit vector
pointing along the local Néel order and m(x) being the local
spin density. The uniform frequency Ω of the rotating Néel
texture effectively acts as an additional magnetic field in the
z direction, introducing a uniform canting of the CAF spins
along the z direction in addition to the existing canting due
to the external field. Therefore, the dynamic steady-state is
characterized by a uniform m(x) = mzez. Defining the total
spin Mz = mzLW, where L and W are the dimensions of the
CAF region [see Fig. 1(a)], the temporal change in Mz, in the
presence of the injected spin current Is, should read

Ṁz = Is + · · · , (2)

where the ellipsis denotes terms arising from the intrinsic
dynamics within the CAF. Inserting the static contribution
Eq. (1) in for Is in Eq. (2) introduces terms linear in V↑ and V↓,
which are the forces conjugate to the charge currents I↑ and I↓,
respectively. Onsager reciprocity then endows the static con-
tributions Īσ with a dynamic contribution as

Iσ = Īσ − σ
~

2e
gQγ fMz , (3)

where fMz ≡ −δMz F is the force conjugate to Mz and F is
the free energy of the CAF [in obtaining Eq. (3), we have
assumed a symmetry S of the device in Fig. 1(a) under time-
reversal followed by a π spatial rotation about the x axis].
Noting that the force fMz relates to the local Néel vector via
fMz = −(n × ṅ) · ez ≈ −Ω [10], the total injected spin cur-
rent Is = (~/2e)[gQ(V↑ − V↓) − (I↑ − I↓)] can be obtained
using Eq. (3) as Is = (γ/4π)(eV− − ~Ω) ≡ Īs + is. Based
on an analogous consideration on the detection side, the to-
tal spin current injected into the edge from the CAF becomes
I′s = −(γ′/4π)(eV ′−−~Ω) ≡ Ī′s+i′s, where γ′ is the inter-channel
scattering parameter, analogous to γ, for the detection side.
Fixing the voltages of the electron reservoirs on the detection
side to zero, i.e., V ′

↑,↓ = 0, we obtain I′s = i′s.
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FIG. 3. (color online) The injection region. Charge currents entering
vertices a and b redistribute according to scattering probability ma-
trix Ŝ . The inter-channel scattering inside the line junction is quanti-
fied by an effective conductance per unit length g(y).

In the absence of any sources of spin loss in the CAF bulk
(i.e., no Gilbert damping) we have Is = I′s, and the global
frequency should read

~Ω =
γ

γ + γ′
eV− . (4)

Then the amount of spin current generated on the detection
side by the superfluid spin transport reads

I′s =
1

4π
γγ′

γ + γ′
eV− . (5)

Eqs. (4) and (5) constitute the main results of this work,
and they predict that the spin current should be independent of
the length L. In graphene, intrinsic spin-orbit effects are very
weak, so it should be reasonable to ignore Gilbert damping as
a first approximation, as we do here. We discuss the effects of
finite Gilbert damping in the Supplementary Material. There,
we show that for fixed W and γ, γ′, Gilbert damping leads to
a decay in the spin current through the ν = 0 region with the
length L.

Since the CAF region has vanishing electrical conductivity
the currents I′

↑
and I′

↓
, which enter the contacts labeled V ′

↑
and

V ′
↓
, must satisfy I′

↑
+ I′
↓

= 0. Therefore, the currents, which
may be measured directly, will be related to the transmitted
spin current by I′

↑
= −I′

↓
= eI′s/~.

Kinetic theory for injection/detection regions. We now de-
velop a simple microscopic model for the parameters γ and
γ′. On the injection side, γ quantifies the extent to which
the two edge channels equilibrate inside the injection region.
Within linear-response, γ can be evaluated for the (static) CAF
in equilibrium. At vertices a and b, the relative spin mis-
alignment between the (↑, ↓) and (⇑, ⇓) states, together with
sources of momentum non-conservation there (e.g., edge dis-
order and the sharp directional change of the edge) can give
rise to inter-channel charge scattering. The redistribution of
charges at these vertices must obey charge conservation, and
can be parameterized by an energy-independent transmission
probability t ∈ [0, 1] (under the assumed symmetry S , the
two vertices are characterized by an identical probability)(

I⇑(0)
I⇓(0)

)
= gQŜ

(
V↑
V↓

)
,

(
I↑
I↓

)
= Ŝ

(
I⇑(W)
I⇓(W)

)
, (6)

where I�(y) (with � =⇑, ⇓) is the local charge current flowing
along the line junction in edge channel �, Ŝ = tσ̂0 + (1 − t)σ̂x
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FIG. 4. Effective spin conductance Gs
eff
≡ I′s/eV− as a function of

the aspect ratio w = W/`. The solid, dashed and dotted curves are,
respectively, for full (t = 0.5), partial (t = 0.75) and no (t = 1)
inter-channel mixing at the vertices.

is the scattering probability matrix at the vertices, and σ̂0 and
σ̂x are the 2 × 2 identity matrix and the x component of the
Pauli matrices, respectively (see Fig. 3).

The occurrence of inter-channel scattering within the line
junction requires: (i) spatial proximity of the two channels,
such that there is sufficient overlap of their orbital wave func-
tions; (ii) elastic impurities, providing the momentum non-
conserving mechanism necessary to overcome the mismatch
in Fermi momenta of the two channels; and (iii) a spin-flip
mechanism, assumed here to be provided by the neighboring
CAF. All three factors go into defining the inter-channel tun-
neling conductance g(y) per unit length, which we treat phe-
nomenologically here. In terms of g(y), the change in current
on channel � is given by δI⇑,⇓(y) = ∓g(y)[V⇑(y) − V⇓(y)]δy,
where V� is the local voltage on edge channel � [we assume
that the edges are always locally equilibrated at all points y
such that the voltage at each point is related to the local cur-
rent through V�(y) = I�(y)/gQ]. Then, the currents inside the
line junction satisfy

∂I⇑
∂y

= −
∂I⇓
∂y

= −
g(y)
gQ

[I⇑(y) − I⇓(y)]. (7)

Assuming a position-independent tunneling conductance g
and defining the edge equilibration length ` ≡ gQ/2g, the cur-
rents entering vertex b is then given by (see Fig. 3)(

I⇑(W)
I⇓(W)

)
=

1
2

(
1 + e−w 1 − e−w

1 − e−w 1 + e−w

) (
I⇑(0)
I⇓(0)

)
, (8)

where w = W/`. Combining Eqs. (6) and (8), we obtain
γ = 1 − (1 − 2t)2e−w. A fully analogous consideration on the
detection side leads to γ′ = 1−(1−2t′)2e−w′ , where w′ = W/`′,
t′ is the transmission probability at vertices a′ and b′, and `′ is
the edge equilibration length associated with the line junction
on the detection side.

The results are now discussed for the symmetric case, in
which t = t′ and ` = `′. In Fig. 4, we plot the effective spin
conductance through the CAF, Gs

eff
≡ I′s/eV− [see Eq. (5)], as

a function of w for different t. Full mixing of the edge chan-
nels at the vertices, i.e., t = 0.5, entails local spin injection at

vertex a. Therefore, increasing the width of the sample has
no effect on the effective spin conductance. If no scattering
occurs at the vertices, i.e., t = 1, spin current is injected only
along the line junction. For widths smaller than the equili-
bration length, i.e., w < 1, increasing the width gives an en-
hancement in the injected spin current, and a linear increase
in Gs

eff
∝ w is obtained (see the dotted line). However, as the

width increases beyond the equilibration length, spin injection
no longer increases and the conductance saturates at a value
1/8π ≈ 0.04. For partial inter-channel mixing at the vertices,
0.5 < t < 1, some spin current is injected at vertex a so a finite
conductance entails even in the limit of w→ 0 (see the dashed
line). With increasing width, the conductance also increases
until the width, again, reaches of order the edge equilibration
length.

Conclusions. In this work, we present a proposal to de-
tect spin superfluidity in the ν = 0 quantum Hall state of
graphene. An observation of long-ranged (superfluid) spin
transport through the ν = 0 state will constitute a direct evi-
dence for the CAF ground state purported recently. Important
open questions with regard to the feasibility of our proposal
relate to the fact that we have only been able to estimate the ef-
ficiency of spin transfer between the edges and the CAF state.
In particular, we do not have a precise understanding of how
the inter-channel scattering strength g(y) depends on disorder
along the edge and on the profile of the electrostatic poten-
tial between the ν = 0 and ν = −2 regions. Furthermore, we
do not have a complete knowledge of the possible sources of
spin loss in the injection and detection regions. This calls for
further detailed theories of the injection and detection mecha-
nisms as well as for experiments testing our proposal in prac-
tice.
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