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The spin-orbit Mott insulator Sr3Ir2O7 provides a fascinating playground to explore 

insulator-metal-transition driven by intertwined charge, spin, and lattice degrees of freedom. 

Here we report high-pressure electric resistance and resonant inelastic X-ray scattering 

measurements on single-crystal Sr3Ir2O7 up to 63-65 GPa at 300 K. The material becomes a 

confined metal at 59.5 GPa, showing metallicity in the ab-plane but an insulating behavior 

along the c-axis. Such unusual phenomenon resembles the strange metal phase in cuprate 

superconductors. Since there is no sign of the collapse of spin-orbit or Coulomb interactions in 

X-ray measurements, this novel insulator-metal transition is potentially driven by a first-order 

structural change at nearby pressures. Our discovery points to a new approach for synthesizing 

functional materials. 

PACS numbers: 71.30.+h, 62.50.-p, 78.70.Ck, 71.27.+a 
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The 5d transition-metal oxides have recently attracted tremendous interest because the 

interplay between spin-orbit interaction and electron correlation in these materials can lead to novel 

states of matter, such as quantum spin liquids, topological orders, and potentially high-temperature 

superconductors [1-5]. Among these compounds, the Ruddlesden-Popper series of iridates 

Srn+1IrnO3n+1 (where n is the number of SrIrO3 perovskite layers between extra SrO layers) has been 

extensively studied. In these systems, the nearly cubic crystal field splits the 5d shell into the eg and 

t2g levels leading to a t5
2g configuration for Ir4+. The strong spin-orbit interaction further splits the t2g 

orbitals into Jeff = 1/2 and 3/2 states. The singly-occupied Jeff = 1/2 state can be further split by the 

electron-electron Coulomb repulsion, giving rise to Mott insulating behavior [6, 7]. With their 

correlated spin, charge, and lattice responses to external perturbation, perovskite iridates provide a 

fascinating system for studying the competition and cooperation of fundamental interactions. 

The double-layered perovskite Sr3Ir2O7 [8] appears in a unique position in this series [4, 8-15]. 

Its structure has been regarded to be tetragonal (I4/mmm, with a = 3.9026 Å and c = 20.9300 Å [16, 

17]), but other studies also reveal that the crystal symmetry could be orthorhombic (Bbcb, with a = 

5.522 Å, b = 5.521 Å, and c = 20.917 Å [18]) or even monoclinic (C2/c, with a = 5.5185 Å, b = 

5.5099 Å, and c = 20.935 Å [19]). The charge gap of Sr3Ir2O7 (~ 0.1-0.3 eV) is comparable to the 

magnitude of the underlying exchange interaction [20-22], and such an insulating state is considered 

in the weak Mott limit. Small perturbations, such as carrier doping, magnetic field, or external 

pressure, can affect the stability of the insulating phase. Therefore, this system provides a valuable 

platform for exploring the collapse of the Mott gap. Indeed, in addition to a dimensionality-driven 

insulator-metal transition (IMT) in the iridate Ruddlesden-Popper series [23], recent experiments 

have found that a small amount of La substitution for Sr in (Sr1−xLax)3Ir2O7 can melt away its 
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insulating gap and lead to a correlated metallic state [24], showing that the system resides in close 

proximity to an IMT phase boundary. 

 Conventional wisdom would dictate that pressure has a similar effect as carrier doping. 

However, to date, high-pressure studies on Sr3Ir2O7 have been inconclusive due to the lack of 

consistent experimental results. Li et al. claimed that Sr3Ir2O7 undergoes an IMT-like transition at 

~13 GPa [25], but Zocco et al. found that the insulating state persists up to 104 GPa [12]. In addition, 

whereas Zhao et al. reported a second-order structure transition at ~15 GPa, Donnere et al. only 

discovered a first-order structure transition at ~54 GPa [17]. Based on first-principles calculations, 

Donnere et al. also predicted an IMT concurring with the structural change [17]. Further experiments 

are thereby necessary to clarify these ambiguities. 

In this Letter, we present electric resistance and resonant inelastic x-ray scattering (RIXS) [26] 

measurements for the first time on single-crystal Sr3Ir2O7 in a diamond anvil cell (DAC) at pressures 

up to ~63-65 GPa at 300 K. The resistance measurements indicate that an IMT is present at ~59.5 

GPa, with the high-pressure phase exhibiting a novel confinement phenomenon: a metallic behavior 

within the ab-plane but an insulating one along the c-axis. This intriguing phenomenon is reminiscent 

of the strange metal phase in cuprate superconductors [27, 28]. Because the RIXS measurement 

shows robust spin-orbit and electron Coulomb interactions within the investigated pressure range, this 

novel IMT is potentially driven by a first-order structure change at a nearby pressure as reported by 

recent diffraction measurements.[17] 

 Figure 1 shows the electric resistance measurements on a Sr3Ir2O7 single crystal at different 

pressures. In this experiment, resistances within the ab-plane Rab (Fig. 1a) and along the c-axis Rc 

(Fig. 1b) are measured at the same time for each pressure point with the standard 

four-probe-electrode-circuit method [29]. Further experimental details are given in the Supplementary 
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Information [30]. At low pressures (18.4 and 43.15 GPa), the system is an insulator, with its 

resistances increasing with decreasing temperature (dRab/dT < 0 and dRc/dT < 0). However, at 59.5 

and 63.0 GPa (Fig. 1d), the material shows a clear metallic behavior within the ab-plane (dRab/dT > 0) 

and an insulating-like state along the c-axis (dRc/dT < 0). Such behavior is highly unusual. Although 

the resistivity ratio between the ab-plane and c-axis could differ by several orders of magnitude for 

an anisotropic metal, localization in only one direction rarely occurs. This novel “confinement” 

phenomenon is reminiscent of the strange metal phase in over-doped cuprate superconductors [27, 

28]. Together with the recent discovery of Fermi-arc features in Sr2IrO4, the similarity between the 

high-pressure phase of Sr3Ir2O7 and the cuprates shows the potential promise of superconductivity in 

perovskite iridates Srn+1IrnO3n+1 [35, 36]. To the best of our knowledge, this is the first time that a 

confined metal is found at high pressure. Our discovery thereby points to a new way of synthesizing 

novel states of matter. 

 IMTs in correlated transition-metal oxides could be driven by bandwidth broadening, 

structural transition, or the collapse of electron-electron interaction.[37, 38] Furthermore, the 

insulating state in Sr3Ir2O7 is associated with a strong spin-orbit interaction, another parameter that 

can trigger an IMT. An understanding of the mechanism underlying the pressured-induced IMT in 

Sr3Ir2O7 requires a detailed knowledge of the pressure evolution of the electronic structure. However, 

such information was unattainable until our recent integration of the RIXS and DAC techniques. [39] 

Figure 2 displays the high-pressure Ir L3-edge RIXS data collected with a scattering vector 

along the [0, π/b, 0] (indexed by a pesudo-tetragonal symmetry for simplicity) direction in a 

horizontal scattering geometry. In the high-pressure experiments, Sr3Ir2O7 single crystal is loaded 

with neon gas as the pressure medium in a Mao-type symmetric DAC. Based on diffraction 

measurements [17], the unit cell of Sr3Ir2O7 has been compressed by nearly 6% at 64.6 GPa. 
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Accordingly, from 0.98 to 64.8 GPa, the scattering vector q spans from [0,π,0] at 0.98 GPa, 

[0,0.99π,0] at 12.4 GPa, [0,0.96π,0] at 23.6 GPa, [0,0.95π,0] at 34.4 GPa, and to [0,0.94π,0] at 43.8 

GPa, due to a sample size reduction with pressure [see the Supplementary Information for further 

details [30]. In addition to the zero-energy quasielastic peak (indicated as A), three other major peaks 

in the RIXS map (Fig. 2a) were identified at energy loss of 0.25 (B), 0.64 (C), and 2.5 (D) eV. The 

resonant energy for peak D is 11.218 KeV, and the resonant energy for C and B is 11.216 KeV.  

Previous RIXS studies [40-43] have identified peak D as a crystal-field excitation between the 

Ir 5d t2g and eg orbitals, possibly mixed with a small amount (5%) of charge-transfer excitation from 

the oxygen 2p ligands [44]. In a nearly cubic crystal field, peak C is the spin-orbit exciton related to 

transition between the Jeff =1/2 and 3/2 states [35, 41, 45]. In other iridate compounds, a non-cubic 

splitting of Jeff=1/2 was also observed [35, 42, 43, 46]. In the low-energy region (< 0.3 eV), peak B 

has been previously attributed to excitations of magnetic origin [47-50], which may overlap with 

phonon excitations of the DAC and the sample. No significant change is observed in the low-energy 

area of peaks A and B during our measurements. 

 To more accurately obtain the energy loss and line width of peaks C and D, a peak-fitting 

analysis is performed. The results are shown in Figs. 3a and 3b, as well as in Table I. Figure 3 

displays two significant changes in peak D: First, whereas its excitation energy grows with applied 

pressure, it is only weakly pressure-dependent above 53.5 GPa (Fig. 3a). Second, the line width drops 

significantly above 53.5 GPa (Fig. 3b). In comparison, the energy of peak C increases with pressure 

up to 23.6 GPa, then decreases. Above 53.5 GPa, peak C’s energy is increased by ~15% compared to 

that at ambient condition (Fig. 3a). Overall, the line width of peak C is increased by pressure, but 

significantly reduced above 53.5 GPa. Although a tetragonal splitting could increase the line width of 

peak C, this change also should have been found in peak D (this change would be anticipated in the 
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peak D as well but is not observed, as shown in Fig.3b); yet Fig. 3b does not show such a change. 

Therefore, the different pressure dependence between peak D and peak C below 53.5 GPa could 

imply that a weak dispersion of spin-orbiton excitation exists in the low pressure phase, despite that 

the excitation has a predominant intra-site character [45, 46]. In RIXS measurements of Sr2IrO4, the 

dispersive behavior of spin-orbiton excitation is also more obvious than the crystal field excitation 

[40]. Above 53.5 GPa, the pressure dependence of peak C and peak D becomes more complicated.  

As the line widths of peaks C and D both drop above 53.5 GPa when the ab-plane of Sr3Ir2O7 

becomes metallic, a correlation appears between the line width reduction and the IMT. Because the 

IrO6 octahedron symmetry becomes even lower above 54 GPa [17], the line width reduction cannot 

arise from the tetragonal splitting. In contrast, a self-energy correction due to electron interaction 

could contribute to the intrinsic lifetime broadening. Therefore, the sudden drop of the line width for 

both peaks C and D could indicate that the effective Coulomb repulsion U is slightly weakened in the 

high-pressure metallic phase due to enhanced screening. Nonetheless, because the bandwidth 

broadening and lattice changes are expected to be more substantial, the small reduction of effective U 

should be regarded as a consequence, instead of a cause, of the pressure-induced IMT. 

 In addition, the RIXS results unambiguously show that spin-orbit coupling strength λ (equal 

to two thirds the energy of peak C) is robust up to 64.8 GPa, where the system already becomes 

metallic according to our resistance measurements. Therefore, the pressure-induced IMT in Sr3Ir2O7 

cannot be driven by a collapse of the spin-orbit interaction. We also note that although the L2/L3-edge 

branching ratio in X-ray absorption spectroscopy could be used to obtain the ground state expectation 

value of <L·S>, the λ value alone cannot be determined in this manner [51, 52]. 

We now discuss further implications of our RIXS data by comparing them to diffraction 

measurements. If the energy loss of peak D is approximated as the crystal-field splitting 10Dq in a 
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perfect Oh symmetry, we can examine whether the relationship 10Dq = K/dn
Ir-O (n = 3.5-7) is still 

valid under pressure, where K is a constant and dIr-O is the Ir-O bond length. However, Fig. 3c shows 

that 10Dq (represented by peak D’s energy loss) and the effective Ir-O bond length (represented by 

the lattice parameter a) no longer comply with the relation 10Dq = K/dn
Ir-O

 (n= 3.5-7). This result 

suggests that the ab-plane Ir-O-Ir bond angle φ must be taken into account.[53, 54] In this case, the 

symmetry of Sr3Ir2O7 in the low-pressure, insulating state cannot be effectively treated as I4/mmm 

[16, 17]. This conclusion is supported by earlier measurements that determined the crystal symmetry 

of Sr3Ir2O7 as orthorhombic (space group Bbca) [18, 25] or even monoclinic (space group C2/c) [12] 

with φ  equal to 158° at ambient conditions. 

By using φ and n as variation parameters, we obtained the Ir-O bond length and bond angle 

using 10Dq = K/dn
Ir-O (with details given in the Supplementary Information [30]). The results are 

plotted in Fig. 3d and listed in Table II. The best fit is obtained for n=4.6, which is comparable to the 

results in other 5d transition-metal oxides [55]. Figure 3d shows that the bond angle φ  decreases 

when the system is approaching the metallic phase below the critical pressure, thereby leading to an 

increased rotation of IrO6 octahedron with respect to the c-axis. In fact, such a conclusion remains 

qualitatively valid for all n = 3.5-7 in the fitting. Such a pressure-induced octahedron rotation could 

provide a de-hybridization mechanism that prevents the system from becoming metallic [56, 57] at 

pressures below 50 GPa.  

 As a first-order approximation, the pervoskite structure tolerance factor,[58]  
 √   (where RSr, Ro, and RIr represent the atomic radii of Sr, O, and Ir, respectively), can be 

used to gauge the stability of structure. When the rotation angle is considered, the tolerance factor t is 

proportional to 1/sin(φ/2). Based on our fitting results, t reaches 1.02-1.04 when the rotation angle 

becomes less than 152o at the critical pressure of 54 GPa as reported by diffraction measurements. 
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This value reaches the t =1.04 perovskite stability limit [59]. Therefore, the structural transition 

above 54 GPa is likely triggered by a saturated IrO6 octahedron rotation. The first-order structural 

change in turn could drive the pressure-induced insulator-metal transition in Sr3Ir2O7, since there are 

no apparent changes in the electron Coulomb repulsion and spin-orbit interactions up to 65 GPa as 

revealed by our RIXS measurements. 

Finally, since the critical pressure (53.5 GPa) in RIXS measurements is nearly identical to the 

structural transition pressure (54 GPa) in diffraction measurements, [17] we believe that the 

electronic and structural transitions are likely to occur at a nearby pressure, or even concur at the 

same pressure point. The difference between the structural transition pressure and the 

insulator-metal-transition pressure (59.5 GPa) determined from our transport measurements is 5.5 

GPa. This mismatch is potentially caused by nonhyrostaticity of the Si oil and the coarse pressure 

step size. We also note that previous transport measurements on powder samples may suffer from 

uncertainties possibly due to the existence of grain boundaries. Moreover, our single-crystal 

measurements do not show any abrupt change in the pressure range below 50 GPa, thereby excluding 

the existence of a structural phase transition below this pressure point, which is consistent with the 

more recent diffraction measurement by Donnere et al. [17]. 

 To conclude, our findings have unraveled a non-trivial interplay between the structural and 

electronic properties in Sr3Ir2O7, and even more generally in the Ruddlesden-Popper series of iridates, 

where various material families also exhibit correlated spin, charge, and lattice degrees of freedom. 

Our discovery of a novel high-pressure metallic phase with intriguing confinement phenomenon 

similar to that found in over-doped cuprate superconductors suggests that superconductivity could 

potentially be found in doped Sr3Ir2O7 under high pressure. Moreover, pressure shows a distinct 
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effect compared to doping or dimensionality-change, thereby pointing to a new way of synthesizing 

novel states of matter that are inaccessible with other methods.  
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Figure 1. Electric resistance measurements of  single crystal Sr3Ir2O7 at high pressure (a) within 
ab-plane and (b) along crystal c-axis. (c) Four gold electric leads and single crsytal Sr3Ir2O7 loaded 
into a symmetric diamond anvil cell. Inset shows two of the leads attached to the top of the single 
crystal, and the other two attached to the bottom. Each diamond culet is approximately 300 μm wide. 
(d) Temperature dependences of the resistances at 59.5 and 63.0 GPa. The system shows metallic 
behavior in the ab-plane, whereas it still exhibits an insulating state along the c-axis. [Authors: this is 
a single-column figure.] 
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Figure 2. (a) Ir L3-edge RIXS map collected at 1.86 GPa. (b) Atomic energy-level diagram for an Ir4+ 
ion in an octahedral crystal field. (c)-(d) RIXS data collected at high pressures between energy loss of 
-1.0 to 6.0 eV, and between 0.0 to 1.0 eV, respectively. The incident energy is 11.216 KeV. [Authors: 
this is a double-column figure.] 
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Figure 3. (a) Energies of crystal-field excitation 10Dq measured from peak D and the spin-orbit 
exciton peak C in RIXS as a function of pressure. (b) Pressure dependences of the RIXS spectral line 
widths of peaks D and C. (c) Crystal-field excitation energy 10Dq versus the lattice parameter a from 
diffraction measurements. Areas of different color represent phases with different structures. (d) 
Fitted ab-plane Ir-O bond length the Ir-O-Ir bond angle. Inset displays the orthorhombic structure of 
Sr3Ir2O7 viewed along the c-axis in the low-pressure, insulating phase. [Authors: this is a 
single-column figure.] 
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Table I. The position and width (full width at half maximum, FWHM) of the crystal-field (CF) 
excitation peak C and the spin-orbit (SO) exciton peak D obtained from peak fitting analysis. The 
lattice parameter in the high-pressure monoclinic phase is averaged over the a- and b-axes. 

. 
P(GPa) a(Å) 10Dq(eV) Width(CF) SO-exciton (eV) Width(SO) 

0.98 3.8860 2.76 2.49 0.54 0.56 
12.40 3.8120 3.06 2.45 0.56 0.48 
23.60 3.7330 3.32 2.49 0.61 0.62 
34.40 3.6810 3.48 2.48 0.60 0.65 
43.80 3.6350 3.58 2.49 0.58 0.80 

53.50 
3.6931 3.51 2.36 

0.64 0.64 

64.80 
3.6699 3.54 2.40 

0.63 0.63 
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Table II. The fitted ab-plane Ir-O bond length dIr-O and bond angle φ based on 10Dq = K/dn
Ir-O. 

  P(GPa) a(Å) 10Dq(eV) φ dIr-O 

n=4.6 

0.98 3.886 2.76 158 1.9794 
12.4 3.812 3.06 159.98 1.9355 
23.6 3.733 3.32 159.98 1.8954 
34.4 3.681 3.48 157.64 1.8761 
43.8 3.635 3.58 152.36 1.8717 
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