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We explore a prototypical two-dimensional massive model of the nonlinear Dirac type and examine its solitary
wave and vortex solutions. In addition to identifying the stationary states, we provide a systematic spectral
stability analysis, illustrating the potential of spinor solutions to be neutrally stable in a wide parametric interval
of frequencies. Solutions of higher vorticity are generically unstable and split into lower charge vortices in
a way that preserves the total vorticity. These conclusions are found not to be restricted to the case of cubic
two-dimensional nonlinearities but are found to be extended to the case of quintic nonlinearity, as well as to that
of three spatial dimensions. Our results also reveal nontrivial differences with respect to the better understood
non-relativistic analogue of the model, namely the nonlinear Schrödinger equation.

Introduction. In the context of dispersive nonlinear wave
equations, admittedly the prototypical model that has attracted
a wide range of attention in optics, atomic physics, fluid me-
chanics, condensed matter and mathematical physics is the
nonlinear Schrödinger equation (NLS) [1–7]. By compari-
son, far less attention has been paid to its relativistic ana-
logue, the nonlinear Dirac equation (NLD) [8], despite its
presence for almost 80 years in the context of high-energy
physics [9–13]. This trend is slowly starting to change, ar-
guably, for three principal reasons. Firstly, significant steps
have been taken in the nonlinear analysis of stability of such
models [14–19], especially in the one-dimensional (1d) set-
ting. Secondly, computational advances have enabled a better
understanding of the associated solutions and their dynam-
ics [20–24]. Thirdly, and perhaps most importantly, NLD
starts emerging in physical systems which arise in a diverse set
of contexts of considerable interest. These contexts include,
in particular, bosonic evolution in honeycomb lattices [25, 26]
and a growing class of atomically thin 2d Dirac materials [27]
such as graphene, silicene, germanene and transition metal
dichalcogenides [28]. Recently, the physical aspects of non-
linear optics, such as light propagation in honeycomb pho-
torefractive lattices (the so-called photonic graphene) [29, 30]
have prompted the consideration of intriguing dynamical fea-
tures, e.g. conical diffraction in 2d honeycomb lattices [31].
Inclusion of nonlinearity is then quite natural in these mod-
els, although in a number of them (e.g., in atomic and optical
physics) the nonlinearity does not couple the spinor compo-
nents.

These physical aspects have also led to a discussion of po-
tential 2d solutions of NLD in [25, 26]. However, a system-
atic and definitive characterization of stability and nonlinear
dynamical evolution of the prototypical coherent structures in
NLD models is still lacking, to the best of our knowledge.
The present work is dedicated to offering analytical and nu-

merical insights into these crucial mathematical and physical
aspects of higher-dimensional nonlinear Dirac equations bear-
ing in mind the physical relevance and potential observability
of such waveforms. As our model of choice, in order to also
be able to compare and contrast with the multitude of existing
1d results (e.g. [18, 23]), we select the well-established Soler
model [32] (known in 1d as the Gross–Neveu model [33]),
which is a Dirac equation with scalar self-interaction. Such
self-interaction is based on including into the Lagrangian den-
sity a function of the quantity ψ̄ψ (which transforms as a
scalar under the Lorentz transformations):

LSoler = ψ̄ (iγµ∂µ −m)ψ +
g

2

(
ψ̄ψ

)2
, (1)

where m > 0, g > 0, ψ(x, t) ∈ CN , x ∈ Rn and γµ,
0 ≤ µ ≤ n are N × N Dirac γ-matrices satisfying the
anticommutation relations {γµ, γν} = 2ηµν , with ηµν the
Minkowski tensor [34], and ψ̄ = ψ∗γ0. (The Clifford Algebra
theory gives the relation N ≥ 2[(n+1)/2] between the spatial
dimension and spinor components [35, Chapter 1, §5.3].) The
nonlinearity of the model is generalized in the spirit of [22],
by using g(ψ̄ψ)k+1/(k + 1) with k > 0. The proof of exis-
tence of solitary waves in this model (in 3d) is in [36–38].

Our results show that the NLD in 2d admits different so-
lutions involving a structure of vorticity S ∈ Z in the first
spinor component, with the other spinor component bearing a
vorticity S+ 1. We identify such solutions for S = 0, 1, . . . .
While prior stability results have often been inconclusive (par-
ticularly in higher dimensions, see, e.g., [39]), our numerical
computation of the spectrum of the corresponding lineariza-
tion operator reveals that only the S = 0 solutions can be
spectrally stable (the spectrum of the linearization contains no
eigenvalues with positive real part), and that this stability takes
place in a rather wide interval of the frequency of the solitary
waves. On the contrary, we find that the states of higher vor-
ticity are generically linearly unstable. Complementing the



2

stability analysis results, our direct dynamical evolution stud-
ies show that the unstable higher vorticity solutions break up
into lower vorticity waveforms, yet conserving the total vor-
ticity. Importantly, the fundamental S = 0 solutions are found
to be potentially stable in models both with a higher order
(quintic) two-dimensional nonlinearity, as well as in higher di-
mensions (3d) under cubic nonlinearity. These features again
reflect differences from the NLS model and as such suggest
the particular interest towards a broader and deeper study of
NLD models.

An important extension of our stability findings for higher
dimensional S = 0 solutions, is that they remain valid
for other types of nonlinearities. These include non-
Lorentz-invariant ones such as most notably those arising in
atomic [25, 26], and optical [29, 30] problems. The funda-
mental difference of those models is that they correspond to
massless equations, contrary to the Soler model. For this rea-
son, we have confirmed our stability conclusions by compar-
ison with those emerging from the model for square binary
waveguides [41] which leads to a massive nonlinear Dirac
equation with the same nonlinearity as in [25, 26].

Theoretical Setup. We start from the prototypical 2d nonlin-
ear Dirac equation system, derived from the Lagrangian den-
sity (1) with k = 1 and m = g = 1:

i∂tψ1 = −(i∂x + ∂y)ψ2 + f(ψ̄ψ)ψ1,

i∂tψ2 = −(i∂x − ∂y)ψ1 − f(ψ̄ψ)ψ2, (2)

whereψ1, ψ2 are the components of the spinorψ ∈ C2 and the
nonlinearity is f(ψ̄ψ) = 1−(ψ̄ψ)k = 1−(|ψ1|2−|ψ2|2)k. We
note that (2) is a U(1)-invariant, translation-invariant Hamil-
tonian system.

We simplify our analysis by using the polar coordinates,
where Eq. (2) takes the form

i∂tψ1 = −e−iθ
(
i∂r +

∂θ
r

)
ψ2 + f(ψ1, ψ2)ψ1,

i∂tψ2 = −eiθ
(
i∂r −

∂θ
r

)
ψ1 − f(ψ1, ψ2)ψ2. (3)

The form of this equation suggests that we look for solutions
as ψ(~r, t) = exp(−iωt)φ(~r) with

φ(~r) =

[
v(r)eiSθ

i u(r)ei(S+1)θ

]
, (4)

with v(r) and u(r) real-valued. The value S ∈ Z can be cast
as the vorticity of the first spinor component.

Once solitary waves have been identified, we explore their
stability. This approach has been previously developed in
related settings including the multi-component NLS (see
e.g. [42]), as well as a massless variant of the Dirac equa-
tion of [43]. The presence of a mass in our case allows not
only a direct comparison with NLS (when ω → m ≡ 1),
but also generates fundamental differences between our re-
sults and those of [25, 26, 43], as discussed below as well.

To examine its spectral stability, we consider a solution ψ
in the form of a perturbed solitary wave solution:

ψ(~r, t) =

[
(v(r) + ρ1(r, θ, t))eiSθ

i
(
u(r) + ρ2(r, θ, t)

)
ei(S+1)θ

]
e−iωt, (5)

with ρ = (ρ1, ρ2)T ∈ C2 a small perturbation. We consider
the linearized equation on ρ,

∂tR = AωR, (6)

with R(r, θ, t) = (Re ρ, Im ρ)
T ∈ R4 and with a matrix-

valued first order differential operator Aω(r, θ, ∂r, ∂θ) [44].
If the spectrum of the linearization operator Aω contains an
eigenvalue λ ∈ σ(Aω) with Reλ > 0, we say that the solitary
wave is linearly unstable; in such cases, we resort to dynam-
ical simulations of Eqs. (2) to explore the outcome of the un-
stable evolution. If there are no such eigenvalues, the solitary
wave is called spectrally stable.

A convenient feature of NLS ground states is that the lin-
earization operator at such states, albeit non-selfadjoint, has
its point spectrum confined to the real and imaginary axes.
This observation is at the base of the VK criterion [40]: a lin-
ear instability can thus develop when a positive eigenvalue bi-
furcates from λ = 0. More precisely, the loss of stability due
to the appearance of a pair of positive and a pair of negative
eigenvalues follows the jump in size of the Jordan block cor-
responding to the unitary invariance; this happens when the
VK condition ∂ωQ(ω) = 0 is satisfied, with Q(ω) being the
charge of a solitary wave.

Crucially, in the NLD case, the spectrum of the lineariza-
tion at a solitary wave is no longer confined to the real and
imaginary axes; the linear stability analysis requires that one
studies the whole complex plane. The key observation is that
Aω in (6) contains r, ∂r, ∂θ, but not θ; this allows to perform a
detailed study of the spectrum of Aω using the decomposition
of spinors into Fourier harmonics corresponding to different
q ∈ Z [44].

In the 3d case, we are not yet able to perform the gen-
eral spectral analysis, but we studied the part of spec-
trum in the invariant subspace corresponding to perturba-
tions of the same angular structure as the solitary waves
[45], [v(r)[1, 0], iu(r)[cos θ, eiφ sin θ]]T ; this invariant sub-
space seems most important since it is responsible for the lin-
ear instability in the non-relativistic limit ω → 1 which is a
consequence of the instability of the 3d cubic NLS.

Numerical results. We have analyzed the existence and sta-
bility of solitary waves (S = 0, with its first component ra-
dially symmetric and the second component having vorticity
1) and vortex solutions (S = 1, with its components hav-
ing vortices of order one and two, respectively). Both soli-
tary waves and vortex solutions exist in the frequency interval
ω ∈ (0,m = 1), a feature critically distinguishing our models
from those of [25, 26]. An intriguing feature of the relevant
waveforms is that both the radial profile of the solitary waves
and that of the vortices possess a maximum that shifts from
r = 0 to a larger r when ω approaches zero (see Fig. 1),
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FIG. 1: Radial profiles of the spinor components for (left) S = 0
solitary waves and (right) S = 1 vortices for different values of ω.

in a way reminiscent of the corresponding 1d solitary wave
structures [22]. Here the relevant state will feature a station-
ary bright intensity ring. In order to obtain and analyze such
coherent structures, we have made use of the numerical meth-
ods detailed in [44]. To confirm the results, we also computed
the spectra using the Evans function approach of [23] adapted
to the present problem.

We start by considering the stability of S = 0 solitary
waves in the cubic (k = 1) case. Figure 2 shows the de-
pendence of the real and imaginary parts of the eigenvalues
with respect to the stationary solution frequency ω. From the
spectral dependencies we can deduce several features of the
2d NLD equation: (1) It is known that the 2d NLS equation
is charge-critical, and the zero eigenvalues are degenerate [6]:
they have higher algebraic multiplicity. In the NLD case, how-
ever, this degeneracy is resolved: in the S = 0 case, as ω
starts decreasing, two eigenvalues (corresponding to q = 0)
start at the origin when ω = 1 and move out of the origin for
ω . 1. The absence of the algebraic degeneracy of the zero
eigenvalue prevents solitary waves from NLS-like self-similar
blow-up which is possible in charge-critical NLS [46]. (2) The
U(1) symmetry and the translation symmetry of the model re-
sult in zero eigenvalues with q = 0 and |q| = 1, respectively
(in both S = 0 and S = 1 cases). (3) As in the 1d NLD
equation, there are also the eigenvalues λ = ±2ωi which
are associated with the SU(1, 1) symmetry of the model [47].
This eigenvalue pair corresponds to q = −(2S + 1), i.e., to a
highly excited linearization eigenstate. (4) Contrary to the 1d
case, where the solitary waves corresponding to any ω < 1 are
spectrally stable, the S = 0 solitary wave is linearly unstable
for ω < 0.121 because of the emergence of nonzero real part
eigenvalues via a Hamiltonian Hopf bifurcation in the |q| = 2
spectrum at ω = 0.121. Another Hopf bifurcation occurs cor-
responding to |q| = 3 (at ω = 0.0885), then yet another one
corresponding to |q| = 4.

It is especially interesting that a wide parametric (over fre-
quencies) interval of stability of solitary waves can also be ob-
served in the quintic (k = 2) NLD case (see Fig. 3); while the
quintic NLS solitary waves blow up (even in one dimension),
the quintic NLD solitary waves are stable even in two dimen-
sions, except for the interval ω < 0.312 where the coherent
structures experience the same Hopf bifurcation as in the cu-
bic case, and for ω > 0.890 where an exponential instability
created by radial q = 0 perturbations emerges. Perhaps even
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FIG. 2: 2d Soler model with cubic (k = 1) nonlinearity. Dependence
of the (top) imaginary and (bottom) real part of the eigenvalues with
respect to ω. Left (respectively, right) panels correspond to S = 0
solitary waves (S = 1 vortices). For the sake of clarity, we only
included the values |q| ≤ 2 for the imaginary part and |q| ≤ 4 for the
real part. In the former case, the imaginary part of the eigenvalues
for q = 0, q = ±1 and q = ±2 are represented by, respectively,
blue, red and black lines.

0 0.5 1
−1

−0.5

0

0.5

1

Im
(λ

)

ω
0 0.5 1

−1

−0.5

0

0.5

1

Im
(λ

)

ω

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

ω

|R
e

(λ
)|

 

 q=0

q=±1

q=±2

 

 

q=±3

q=±4

0 0.5 1
0

0.05

0.1

|R
e

(λ
)|

ω

FIG. 3: Left: Solitary waves in the 2d Soler model with quintic (k =
2) nonlinearity. Dependence of the (top) imaginary and (bottom)
real part of the eigenvalues with respect to ω in the same format as
the previous figure. Right: Solitary waves in the 3d Soler model
with cubic (k = 1) nonlinearity. Spectrum of the linearization in
the one-dimensional invariant (q = 0) subspace which contains the
eigenvalue that is responsible for the instability for ω ∈ (ωc, 1), with
ωc ≈ 0.936.

more remarkably, the right panel of the Fig. 3 illustrates that
this stability of NLD solitons against radial perturbations can
be found in suitable frequency intervals even in 3d (see [48]
for a discussion of the equations for existence and stability of
radial perturbations in 3d). Both of the above cases (quintic
2d and cubic 3d NLD) are charge-supercritical i.e., the charge
goes to infinity in the nonrelativistic limit ω → m. Contrary
to the pure-power supercritical NLS whose solitary waves re-
main linearly unstable for all frequencies, solitary waves in
the Soler model become spectrally stable when ω drops be-
low some dimension-dependent critical value ωc = ωc(n, k)
[44]. The relevant unstable eigenvalue (associated with q = 0
and radially-symmetric collapse) is only present as real for
ω ∈ (ωc, 1), where ωc ≈ 0.936. This was identified in
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FIG. 4: Snapshots showing the evolution of the density of an unstable
S = 0 solitary wave with ω = 0.12. The soliton which initially had
a circular shape becomes elliptical and rotates around the center of
the original solitary wave.

[32] as the value at which both the energy and charge of
solitary waves have a minimum. Hence, we indeed find that
the radially-symmetric collapse-related instability ceases to be
present below this critical point. Finally, as regards two di-
mensions, S = 1 vortices are unstable for every ω, because of
the presence in the spectrum of quadruplets of complex eigen-
values. These quadruplets emerge (and disappear) for differ-
ent values of q via direct (inverse Hopf) bifurcations; see the
right panel of Fig. 2. The spectrum for S = 2 vortex is quite
similar to that of S = 1; for this reason, we do not analyze it
further.

In order to analyze the result of instabilities in 2d settings,
we have probed the dynamics of unstable solutions directly
(see [44] for details). Prototypical examples of unstable S = 0
solitary waves and S = 1 vortices for k = 1 are shown in
Figs. 4 and 5. As can be observed, the S = 0 solitary waves
spontaneously amplify perturbations breaking the radial sym-
metry in their density and, as a result, become elliptical and
rotate around the center of the circular density of the original
solitary wave in line with the expected amplification of the
q = 2 unstable eigenmode. On the other hand, the S = 1
vortices split into three smaller ones. Let us mention that in
the latter case, the first spinor component splits into structures
without angular dependence, whereas the second component
splits into corresponding ones with angular dependence∝ eiθ,
in accordance with the ansatz of Eq. (4). This preserves the
total vorticity across the two components, as is also shown
in Fig. 5. Along a similar vein, the instability of an S = 2
vortex eventually leads to the emergence of five (0, 1) pairs,
again preserving the total vorticity. Finally, we have analyzed
the outcome of the instabilities caused by radially-symmetric
perturbations in the k = 2 case for ω > ωc (see Fig. 5). We
can observe the typical behavior of such solutions, i.e. the
density width (and amplitude) oscillate leading to a “breath-
ing” structure, but there is no collapse. This phenomenology
is reminiscent of the 1d case [49].

Conclusions and Future Challenges. We have illustrated
that solitary waves of vorticity S = 0 in one spinor compo-
nent and S = 1 in the other are spectrally stable within a
large parametric interval, suggesting their physical relevance.
In that connection, we highlight that although our models of

FIG. 5: Isosurfaces for the density of an S = 1 (left) and S = 2
(center) vortex with k = 1, ω = 0.6 and (right) an S = 0 solitary
wave with k = 2 and ω = 0.94.

choice may bear a particular nonlinearity, our results suggest
that under different nonlinearities including the more physi-
cally relevant ones of e.g., [25, 26] and massive models [41]
still bear stable solitary waves for a suitable wide paramet-
ric range of frequencies. Thus, the conclusion of higher di-
mensional stability is more general than the specifics of our
particular nonlinearity and hence of broad interest. We also
showcased the significant difference of NLD from the focus-
ing NLS equation, where solitary waves are linearly unstable
in the charge-supercritical cases. When the NLD solutions
were found to be unstable, their dynamical evolution sug-
gested breathing oscillations in the S = 0 case and splitting
into lower charge configurations for S = 1 and S = 2.

It is of interest to extend present considerations to numerous
settings. From a mathematical physics perspective, it would
be useful to explore further the 3d stability and associated dy-
namics. This is especially timely given that the 3d analogue
of photonic graphene has been experimentally realized very
recently [50]. Admittedly, the latter setting does not feature
a mass in the model, thus the generalization of NLD models
such as those appearing in the works of [25, 26, 43] would
be particularly important there. It would also be of interest to
compare more systematically the present findings with mod-
els associated with different nonlinearities, including the case
of honeycomb lattices in atomic and optical media or, e.g.,
those stemming from wave resonances in low-contrast pho-
tonic crystals [51].
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