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Network models with latent geometry have been used successfully in many applications in network
science and other disciplines, yet it is usually impossible to tell if a given real network is geometric,
meaning if it is a typical element in an ensemble of random geometric graphs. Here we identify
structural properties of networks that guarantee that random graphs having these properties are
geometric. Specifically we show that random graphs in which expected degree and clustering of
every node are fixed to some constants are equivalent to random geometric graphs on the real line,
if clustering is sufficiently strong. Large numbers of triangles, homogeneously distributed across all
nodes as in real networks, are thus a consequence of network geometricity. The methods we use to
prove this are quite general and applicable to other network ensembles, geometric or not, and to
certain problems in quantum gravity.

In equilibrium statistical mechanics it is often possible
to tell if a given system state is a typical state in a given
ensemble. In network science, where statistical mechan-
ics methods have been used successfully in a variety of
applications [1–3], the same question is often intractable.
Stochastic network models define ensembles of random
graphs with usually intractable distributions. Therefore
it is usually unknown if a given real network is a typical
element in the ensemble of random graphs defined by a
given model, i.e., if the model is appropriate for the real
data, so that it can yield reliable predictions. Progress
has been made in addressing this problem in some classes
of models, such as the configuration [4–10] and stochastic
block models [11–13].

Here we are interested in latent-space network mod-
els [14]. In these models, nodes are assumed to populate
some latent geometric space, while the probability of con-
nections between nodes is usually a decreasing function
of their distance in this space. Latent-space models were
first introduced in sociology in the 70ies [15] to model ho-
mophily in social networks—the more similar two people
are, the closer they are in a latent space, the more likely
they are connected [16]. Since then, latent-space models
have been used extensively in many applications, rang-
ing from predicting social behavior and missing or future
links [17–19], to designing efficient information routing
algorithms in the Internet [20] and identifying connec-
tions in the brain critical for its function [21], to infer-
ring community structure in networks [14]—see [22, 23]
for surveys.

The simplest network model with a latent space is the
model with the simplest latent space, which is the real
line R1. Nodes are points sprinkled randomly on R1, and
two nodes are connected if the distance between them on
R1 is below a certain threshold µ. This random graph
ensemble is known as the Gilbert model of random ge-
ometric graphs [24, 25]. Even in this simplest model,
the ensemble distribution is intractable and unknown.
Therefore it is impossible to tell if a given (real) network

is “geometric”—that is, if it is a typical element in the
ensemble. One can always check (in simulations) a sub-
set of necessary conditions: if the network is geometric,
then all its structural properties must match the corre-
sponding ensemble averages. By “network property” one
usually means a function of the adjacency matrix. The
simplest examples of such functions are the numbers of
edges, triangles, or subgraphs of different sizes in the net-
work [26]. The distributions of betweenness or shortest-
path lengths correspond to much less trivial functions of
adjacency matrices. Since the number of such property-
functions is infinite, and since their inter-dependencies
are in general intractable and unknown [26], it is impos-
sible to check if all properties match and all conditions
necessary for network geometricity are satisfied. Do any
sufficient conditions exist? That is, are there any struc-
tural network properties such that random networks that
have these properties are typical elements in the ensem-
ble of random geometric graphs?

Here we answer this question positively for random ge-
ometric graphs on R1. We show that the set of sufficient-
condition properties is surprisingly simple. These prop-
erties are only the expected numbers of edges k̄ and tri-
angles t̄, or equivalently, expected degree k̄ and clus-
tering c̄ = 2t̄/k̄2 of every node. Specifically, we con-
sider a maximum-entropy ensemble of random graphs
in which the expected degree of every node is fixed to
the same value k̄, while the expected number of trian-
gles to which every node belongs is also fixed to some
other value t̄. There is seemingly nothing geometric
about this ensemble since it is defined in purely network-
structural terms—edges and triangles, in combination
with the maximum-entropy principle [27, 28]. Yet we
show that if clustering is sufficiently strong, then this en-
semble is equivalent to the ensemble of random geometric
graphs on R1. In general, the ensemble is not sharp but
soft [29, 30]—the probability of connections is not 0 or
1 depending on if the distance between nodes is larger
or smaller than µ, but the grand canonical Fermi-Dirac
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probability function in which energies of edges are dis-
tances they span on R1. Strong clustering, a fundamen-
tally important property of real networks [31, 32], thus
appears as a consequence of their latent geometry.

The simplest model of networks with strong clustering
is the Strauss model [33] of random graphs with given
expected numbers of edges and triangles. The Strauss
model is well studied, but many of its problematic fea-
tures, including degeneracy and phase transitions with
hysteresis caused by statistical dependency of edges and
non-convexity of the constraints, are not observed in real
networks [27, 34, 35]. In particular, in the Strauss model
all the triangles coalesce into a maximal clique, so that
a portion of nodes have a large degree and clustering
close to 1, while the rest of the nodes have a low de-
gree and zero clustering [35, 36]. This clustering organi-
zation differs drastically from the one in real networks,
where triangles are homogeneously distributed across all
nodes, modulo Poisson fluctuations and structural con-
straints [37, 38]. If we want to fix the expected number
of edges and triangles of every node to the same val-
ues k̄ and t̄, then the Strauss model cannot be “fixed”
to accomplis this. Therefore instead we begin with the
canonical ensemble of random graphs in which every edge
{i, j} occurs, independently from other edges, with given
probability pij , which in general is different for different
edges. This ensemble is well-behaved and void of any
Strauss-like pathologies [2]. The expected degree 〈ki〉
and number of triangles 〈ti〉 at node i in the ensemble
are simply 〈ki〉 =

∑
j pij and 〈ti〉 = (1/2)

∑
j,k pijpjkpki.

Any connection probability matrix {pij} satisfying con-
straints 〈ki〉 = k̄ and 〈ti〉 = t̄ for some k̄, t̄ will yield a
canonical ensemble in which all nodes will have the same
expected degree k̄ and number of triangles t̄. However
we cannot claim that such an ensemble will be an unbi-
ased ensemble with these constraints, because a particu-
lar matrix {pij} satisfying them may enforce additional
constraints on the expected values of some other network
properties. In other words, we first have to find a way
to sample matrices {pij} from some maximum-entropy
distribution subject only to the desired constraints.

This seemingly intractable problem finds a solution us-
ing the theory of graph limits known as graphons [39],
with basic formalism introduced in network models with
latent variables [40, 41]. Graphon p(x, y) is a symmetric
integrable function p : [0, 1]2 → [0, 1], which is essen-
tially the thermodynamic n → ∞ limit of matrix {pij}.
For a fixed graph size n, graphon p defines graph ensem-
ble Gn(p) by sprinkling n nodes uniformly at random on
interval [0, 1], and then connecting nodes i and j with
probability pij = p(xi, xj), where xi, xj are sprinkled po-
sitions of i, j on [0, 1]. In the n → ∞ limit, the dis-
crete node index i becomes continuous x ∈ [0, 1]. Graphs
in ensemble Gn(p) are dense, because the expected de-

gree of a node at x ∈ [0, 1] is 〈k(x)〉 = n
∫ 1

0
p(x, y) dy.

Here we are interested in sparse ensembles, since most

real networks are sparse. Their average degrees are ei-
ther constant or growing at most logarithmically with the
network size n [42]. To model sparse networks, one can
replace p(x, y) by a rescaled graphon pn(x, y) = p(x, y)/n
which depends on n [41, 43]. The expected degrees do not
then depend on n, but the number of triangles vanishes

as 1/n, 〈t(x)〉 = (1/2n)
∫∫ 1

0
p(x, y)p(y, z)p(z, x) dy dz, as

opposed to clustering in real networks, where it does not
depend on the size of growing networks either [42].

The solution to this impasse is a linearly growing sup-
port of graphon p. That is, let p : R2 → [0, 1] be a
graphon on the whole infinite plane R2. For any finite
n we simply consider its restriction to a finite square
of size n × n, e.g., I2n, where In = [−n/2, n/2], so that
pn : I2n → [0, 1] and pn(x, y) = p(x, y). Graphon p(x, y)
is then the connection probability in the thermodynamic
limit. In this case, both the expected degree and num-
ber of triangles at any node in the thermodynamic limit
can be finite and positive: 〈k(x)〉 =

∫
R p(x, y) dy and

〈t(x)〉 = (1/2)
∫∫

R2 p(x, y)p(y, z)p(z, x) dy dz. For a fi-
nite graph size n, the graph ensemble Gn(p) is defined
by sprinkling n points xi uniformly at random on inter-
val In, and then connecting nodes i and j with proba-
bility pij = p(xi, xj). The only difference between Gn(p)
and the infinite graph ensemble G∞(p) in the thermo-
dynamic limit is that in the latter case this sprinkling
is a realization Π = {xi} of the unit-rate Poisson point
process on the whole infinite real line R.

The main utility of using graphons here is that they
allow us to formalize our entropy-maximization task as
a variational problem which we will now formulate. We
first observe that for a fixed sprinkling Π, the connec-
tion probability matrix {pij} is also fixed. Since with
fixed {pij}, all edges are independent Bernoulli random
variables albeit with different success probabilities, the
entropy of a graph ensemble S[Gn(p|Π)] with fixed sprin-
kling Π is the sum of entropies of all edges, S[Gn(p|Π)] =
(1/2)

∑
i,j h(pi,j), where h(p) = −p log p− (1−p) log(1−

p) is the entropy of a Bernoulli random variable with the
success probability p. Unfixing Π now, the distribution
of entropy S[Gn(p|Π)] as a function of random sprinkling
Π in ensemble Gn(p) is known [44] to converge in the
thermodynamic limit to the delta function centered at
the graphon entropy s[p] defined below:

S[Gn(p|Π)]→ S[Gn(p)]→ s[p] =
1

2

∫∫
R2

h[p(x, y)] dx dy,

(1)
where S[Gn(p)] is the Gibbs entropy of ensemble Gn(p),
S[Gn(p)] = −

∑
G∈Gn(p) P (G) logP (G). Bernoulli en-

tropy S[Gn(p|Π)] is thus self-averaging, and for large n,
any graph sampled from Gn(p) is a typical representa-
tive of the ensemble. The proof in [44] is for dense
graphons, but we show in Supplementary Information
that S[Gn(p|Π)] is self-averaging in our sparse settings as
well. Therefore, our sparse ensemble Gn(p) is unbiased if
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it is defined by graphon p∗(x, y) that maximizes graphon
entropy s[p] above, subject to the constraints that the
expected numbers of edges and triangles at every node
are fixed to the same values k̄, t̄,

〈k(x)〉 =

∫
R
p(x, y) dy = k̄, (2)

〈t(x)〉 =
1

2

∫∫
R2

p(x, y)p(y, z)p(z, x) dy dz = t̄. (3)

To find graphon p∗(x, y) that maximizes entropy (1)
and satisfies constraints (2,3), we observe that con-
straint (2) implies that p∗(x, y) cannot be integrable since∫∫

R2 p(x, y) dx dy = k̄
∫
R dx. Therefore we first have to

solve the problem for finite n and then consider the ther-
modynamic limit. Using the method of Lagrange multi-
pliers, we define Lagrangian L =

∫∫
I2n
dx dy { 12h[p(x, y)]+

λkp(x, y)+ 1
2λtp(x, y)

∫
In
p(y, z)p(z, x) dz} with Lagrange

multipliers λk, λt coupled to the degree and triangle con-
straints. Equation δL/δp = 0 leads to the following inte-
gral equation

log

(
1

p(x, y)
− 1

)
+ 2λk + 3λt

∫
In

p(x, z)p(z, y) dz = 0,

(4)
which appears intractable. However, inspired by the
grand canonical formulation of edge-independent graph
ensembles [45], we next show that for sufficiently
large n, k̄, t̄, its approximate solution is the following
Fermi-Dirac graphon

p∗(x, y) =

{
1

1+eβ(ε−µ)
= 1

1+e2α(r−1/2) if 0 ≤ r ≤ 1,
1

1+eβµ
= 1

1+eα ≡ p
∗
α if r > 1,

(5)

where energy ε = |x − y| ≥ 0 of edge-fermion (x, y) is
the distance between nodes x and y, the chemical poten-
tial µ ≥ 0 and inverse temperature β ≥ 0 are functions
of k̄ and t̄, while α = βµ and r = ε/2µ are the rescaled
inverse temperature—the logarithm of thermodynamic
activity—and energy-distance.

To show this, we first notice that if p∗(x, y) is a solu-
tion, then the degree constraint (2) becomes

k̄ =

∫
In

p∗(x, y) dy = 2µ+ p∗α(n− 4µ) ≈ 2µ+ p∗αn. (6)

Therefore if the average degree k̄ is fixed and does not
depend on n, then p∗α ∼ 1/n and α ∼ log n. If p∗α is
small, then the last integral term in (4)—the expected
number of common neighbors between nodes x and y—is
negligible for r > 1 (|x − y| > 2µ), and Eq. (4) sim-
plifies to the equation for Erdős-Rényi graphs in which
only the expected degree is fixed. Its solution is constant
p∗(x, y) = 1/(1 + e−2λk), so that λk = −α/2, cf. (5).

If r < 1, then the common-neighbor integral in (4) is
no longer negligible, but we can evaluate it exactly for
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FIG. 1. Rescaled number of common neighbors Cn(r, α) (7)
versus 1 − r for different values of α = βµ (µ = 1, n = 103).

p∗(x, y). The exact expression for

Cn(r, α) =
1

2µ

∫
In

p∗(x, z)p∗(z, y) dz, (7)

where r = |x−y|/2µ, is terse and non-informative, so that
we omit it for brevity. Its important property is that for
large α it is closely approximated by Cn(r, α) ≈ 1 − r,
Fig. 1. In the α →∞ limit this approximation becomes
exact since p∗(x, y) → Θ(µ − |x − y|) = Θ(1/2 − r),
where Θ() is the Heaviside step function—x and y are
connected if |x − y| < µ. Approximating the common-
neighbor integral in (4) by 2µ(1 − r), and noticing that
log(1/p∗(x, y) − 1) = β(ε − µ) = 2α(r − 1/2), we trans-
form (4) into

α(r − 1/2) + λk + 3µλt(1− r) = 0. (8)

This equation has a solution with λk = −α/2 and
λt = β/3. This solution is consistent with the solu-
tion in the r > 1 regime. First, the value of λk is the
same in both regimes r < 1 and r > 1. Second, one can
check that the expected number of common neighbors∫
In
p∗(x, z)p∗(z, y) dz decays exponentially with α for any

r > 1. Therefore the common neighbor term in (4) is in-
deed negligible in the r > 1 regime, even though the
prefactor 3λt = α/µ is large for fixed µ and large α.

Figure 2 illustrates that if α is large, then the expected
average degree k̄ (6) and clustering

c̄ =
2t̄

k̄2
=

1

k̄2

∫∫
I2n

p∗(x, y)p∗(y, z)p∗(z, x) dy dz (9)

in ensemble Gn(p∗) are functions of only µ and α, respec-
tively. Given values of the two constraints k̄ and t̄ (or c̄)
define the two ensemble parameters µ and β (or α) as the
solution of Eqs. (6,9). We note that for large α (α > 10
in Fig. 2), clustering is close to its maximum c̄max = 3/4
(t̄max = 3µ2/2), which can be computed analytically.
Since our approximations are valid only for large α, they
apply only to graphs with strong clustering. In the sparse
thermodynamic limit n → ∞ with a finite average de-
gree k̄, the chemical potential µ must be finite and α
must diverge (temperature T = 1/β must go to zero) be-
cause of (6), so that only graphs with strongest clustering
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FIG. 2. Average degree (a,c) and clustering (b,d) in soft
random geometric graphs with connection probability (5) as
functions of µ and β. The dashed curves in (a,b) show the
simulations results averaged over 100 random graphs of size
n = 103 on the interval [−500, 500] with periodic boundary
conditions. The solid curves in (a,b) and color in (c,d) are
the (corresponding) analytic results using (6) in (a,c), and
numeric evaluation of (9) in (b,d) with n = 103. The color
axes in (c,d) are in the logarithmic scale, with color ticks
evenly spaced in log k̄ in (c) and log(3/4 − c̄) in (d).

are the exact solution to our entropy-maximization prob-
lem. For finite n however, higher-temperature graphs
with weaker clustering are an approximate solution.

We emphasize that the fact that graphon (5), in which
the dependency on x and y is only via distance ε = |x−y|,
is an approximate entropy maximizer, means that the en-
semble of random graphs in which the expected degree
and clustering of every node are fixed to given constants,
is approximately equivalent to the ensemble of soft ran-
dom geometric graphs with the specific form of the con-
nection probability, i.e., the grand canonical Fermi-Dirac
distribution function that maximizes ensemble entropy
constrained by fixed average energy and number of par-
ticles. In our ensemble, Fermi particles are graph edges (0
or 1 edge between a pair of nodes), and their energy is the
distance they span on R1. The average number of parti-
cles m̄ = k̄n/2 is fixed by chemical potential µ. Fixing
average energy ε̄ and fixing average number of triangles t̄
are equivalent because the smaller the ε̄, the more likely
the lower-energy/smaller-distance states, the larger the
t̄ thanks to the triangle inequality in R1. This equiva-
lence explains why the Fermi-Dirac distribution (5) ap-
pears as an approximate solution to our entropy maxi-
mization problem constrained by fixed k̄ and t̄. In the
zero-temperature limit β →∞, graphon (5) becomes the
step function p∗(x, y) = Θ(µ−ε), meaning that these soft
random geometric graphs become the traditional sharp
random geometric graphs in which any pair of nodes is
connected if their distance-energy is at most µ. All the

approximations become exact in this limit.

The degree distribution in (soft) random geometric
graphs is the Poisson distribution [25], while in many real
networks it is a power law. Triangles in real networks are
still homogeneously distributed across all nodes, albeit
subject to non-trivial structural constraints imposed by
the power-law degree distribution [26, 37, 38]. As shown
in [46, 47], random geometric graphs on R1 can be gen-
eralized to satisfy an additional constraint enforcing a
power-law degree distribution. This generalization still
uses the grand canonical Fermi-Dirac connection proba-
bility, albeit in hyperbolic geometry, and reproduces the
clustering organization in real networks. These observa-
tions lead to the conjecture that real scale-free networks
are typical elements in ensembles of soft random geo-
metric graphs with non-trivial degree distribution con-
straints. If so, then non-trivial community structure, an-
other common feature of real networks, is a reflection of
non-uniform node density in latent geometry [14, 48].

As a final remark we note that the graphon-based
methodology we developed here is quite general and can
be applied to other network models with latent variables,
geometric or not, to tell if a given model is adequate for
a given network. We also note that a very similar class of
problems underlies approaches to quantum gravity with
emerging geometry [23, 49] where one expects continu-
ous spacetime to emerge in the classical limit from fun-
damentally discrete physics at the Planck scale. Perhaps
the most directly related example is the Hauptvermutung
problem in causal sets [50, 51]. Given a Lorentzian space-
time, causal sets are random geometric graphs in it with
edges connecting timelike-separated pairs of events sprin-
kled randomly onto the spacetime at the Planck density.
If no continuous spacetime is given to begin with, then
what discrete physics can lead to an ensemble of random
graphs equivalent to the ensemble of causal sets sprin-
kled onto the spacetime that we observe? To answer this
question, one has to solve the same ensemble equivalence
problem as we solved here, except not for R1, but for the
spacetime of our universe.
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[48] K. Zuev, M. Boguñá, G. Bianconi, and D. Krioukov, Sci
Rep 5, 9421 (2015).

[49] Z. Wu, G. Menichetti, C. Rahmede, and G. Bianconi,
Sci Rep 5, 10073 (2015).

[50] R. Sorkin, in Lectures on Quantum Gravity, edited by
A. Gomberoff and D. Marol (Springer, New York, 2005)
pp. 305–328.

[51] L. Bombelli, J. Lee, D. Meyer, and R. Sorkin, Phys Rev
Lett 59, 521 (1987).

http://dx.doi.org/10.1103/PhysRevE.80.045102
http://dx.doi.org/10.1103/PhysRevE.80.045102
http://dx.doi.org/10.1103/PhysRevE.89.062807
http://dx.doi.org/10.1103/PhysRevE.89.062807
http://dx.doi.org/10.1103/PhysRevE.78.015101
http://dx.doi.org/10.1103/PhysRevE.78.015101
http://dx.doi.org/10.1103/PhysRevLett.102.038701
http://dx.doi.org/10.1103/PhysRevLett.102.038701
http://dx.doi.org/10.1088/1367-2630/17/2/023052
http://dx.doi.org/10.1088/1367-2630/17/2/023052
http://dx.doi.org/10.1103/PhysRevE.85.056122
http://dx.doi.org/10.1103/PhysRevLett.110.148701
http://dx.doi.org/10.1103/PhysRevX.4.011047
http://dx.doi.org/10.1103/PhysRevLett.115.088701
http://dx.doi.org/10.1103/PhysRevLett.115.088701
http://dx.doi.org/10.1146/annurev.soc.27.1.415
http://dx.doi.org/10.1146/annurev.soc.27.1.415
http://dx.doi.org/10.1198/016214502388618906
http://dx.doi.org/10.1198/016214502388618906
http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-453
http://dx.doi.org/10.3934/dcdsb.2014.19.1335
http://dx.doi.org/10.1038/ncomms1063
http://dx.doi.org/10.1038/ncomms1063
http://dx.doi.org/10.1038/ncomms8651
http://dx.doi.org/10.1016/j.physrep.2010.11.002
http://dx.doi.org/10.1209/0295-5075/111/56001
http://dx.doi.org/10.1137/0109045
http://dx.doi.org/ 10.1038/ncomms9627
http://dx.doi.org/10.1103/PhysRevLett.114.158701
http://dx.doi.org/10.1103/PhysRevLett.114.158701
http://dx.doi.org/10.1103/PhysRevLett.115.268701
http://dx.doi.org/10.1103/PhysRevE.93.032313
http://dx.doi.org/10.1103/PhysRevE.93.032313
http://arxiv.org/abs/1311.3897
http://dx.doi.org/ 10.1073/pnas.0400054101
http://dx.doi.org/10.1103/PhysRevE.93.030302
http://dx.doi.org/10.1103/PhysRevE.93.030302
http://dx.doi.org/10.1137/1028156
http://dx.doi.org/10.1103/PhysRevE.81.046115
http://dx.doi.org/10.1103/PhysRevE.72.026136
http://dx.doi.org/10.1103/PhysRevE.72.026136
http://dx.doi.org/10.1088/1751-8113/47/17/175001
http://dx.doi.org/10.1088/1751-8113/47/17/175001
http://dx.doi.org/10.1038/srep02517
http://dx.doi.org/10.1038/srep02517
http://dx.doi.org/10.1209/0295-5075/97/28005
http://dx.doi.org/10.1209/0295-5075/97/28005
http://dx.doi.org/10.1103/PhysRevLett.89.258702
http://dx.doi.org/ 10.1103/PhysRevE.68.036112
http://dx.doi.org/ 10.1103/PhysRevE.68.036112
http://dx.doi.org/ 10.1016/j.physrep.2005.10.009
http://arxiv.org/abs/1401.2906
http://arxiv.org/abs/1009.2376
http://dx.doi.org/10.3390/e15083238
http://dx.doi.org/10.1103/PhysRevLett.100.078701
http://dx.doi.org/10.1103/PhysRevLett.100.078701
http://dx.doi.org/10.1103/PhysRevE.82.036106
http://dx.doi.org/10.1038/srep09421
http://dx.doi.org/10.1038/srep09421
http://dx.doi.org/10.1038/srep10073
http://dx.doi.org/ 10.1103/PhysRevLett.59.521
http://dx.doi.org/ 10.1103/PhysRevLett.59.521

	Clustering blueimplies geometry in networks 
	Abstract
	Acknowledgments
	References


