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Chirality is known to play a pivotal role in determining material properties and functionalities.
However, it remains a great challenge to understand and control the emergence of chirality and the
related enantioselective process particularly when the building components of the system are achiral.
Here we explore the generic mechanisms driving the formation of two-dimensional chiral structures
in systems characterized by isotropic interactions and three competing length scales. We demon-
strate that starting from isotropic and rotationally invariant interactions, a variety of chiral ordered
patterns and superlattices with anisotropic but achiral units can self-assemble. The mechanisms for
selecting specific states are related to the length-scale coupling and the selection of resonant density
wave vectors. Sample phase diagrams and chiral elastic properties are identified. These findings
provide a viable route for predicting chiral phases and selecting the desired handedness.
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Chirality is a fundamental characteristic that has pro-
found implications in science. Its emergence is largely
governed by the interplay of geometry, interactions, and
surface functionality of the system building blocks. While
it is natural to expect chirality in systems with chiral
components (e.g., single-handed biochemical molecules)
and specific anisotropic interactions, interestingly chiral-
ity can also emerge in systems composed of achiral build-
ing blocks. This has been observed in recent experiments
on colloids (e.g., the controlled self-assembly of colloidal
helical chains under magnetic field [1] and planar chi-
ral patterns with long range order [2–4]), self-assembling
faceted nanocrystals [5], and inorganic-organic hybrid
materials that are of significant potential in biochemical
and pharmaceutical applications [6].

Although a considerable amount of effort has been de-
voted to understanding these phenomena, most of the
existing theoretical studies are based on atomistic simu-
lations (Monte Carlo or molecular dynamics) using pre-
determined and tailored interparticle potentials. These
have been applied to the investigations of self-assembly
processes [7–14], in particular for systems governed by
isotropic interactions [7–12] which can even lead to chi-
ral patterns [9]. These results are dependent on atom-
istic details such as the type and shape of individual
constituents and the form of their mutual interactions
that vary vastly between systems. It is thus important
to identify the underlying generic mechanisms that give
rise to these fascinating findings.

One of the key factors controlling the ordering process
is the coupling among different length scales. Recent
studies have demonstrated that up to three length scales
are sufficient to produce all five two-dimensional (2D)
Bravais lattices and other ordered phases [15], while in-
terparticle interactions of two length scales can lead to 6
different 2D quasicrystalline orders [11]. One would ex-

pect this length-scale factor also plays an important role
on the emergence of system chirality. Chirality in 2D
patterns is characterized by the lack of symmetry axes,
and that the mirror image of a chiral pattern cannot be
translated and rotated to coincide with itself. Such chi-
ral patterns can simply emerge from the interference of
plane waves with unequal wavelengths, representing dif-
ferent length scales of the system (see Fig. S1 of the
supplemental material [16]). The length-scale effect can
also be inferred from recent experiments where chirality
emerges in colloidal or nanocrystal systems composed of
achiral shaped particles such as rhombs [3], square crosses
[4], nano-octapods [2], and elongated hexagons [5]. These
geometries of building blocks give rise to various effective
length scales of interparticle couplings and interactions.

Here we provide a comprehensive study of 2D chiral
pattern selection, using a modeling method based on ba-
sic arguments of symmetry and length scales. We ex-
amine how chirality arises from isotropic interactions in
systems with underlying achiral base symmetries. Via
controlling three competing length scales we identify and
predict various chiral phases and superlattices and deter-
mine the elastic properties. Although the building blocks
of the patterns display different shapes and types, a sce-
nario similar to that found in experiments and atomistic
simulations, we show that the basic selection mechanisms
are generic and depend only on the nonlinear coupling
and selection of system characteristic density waves.

The study here is based on the phase field crystal
(PFC) method which has been applied to a wide range of
solid and soft matter systems across different scales [22–
29]. We use a multimode PFC model that was developed
very recently [15], with a free energy functional

F =

∫
dr
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and the dissipative or diffusive dynamics for the atomic
density field ψ, i.e., ∂ψ/∂t = −(−∇2)nδF/δψ (with
n = 0 or 1). This model incorporates the coupling and
competition between multiple length scales (i.e., N Qi
modes) in a simple and fundamental way. Here λ is re-
lated to the system elastic constants, and bi gives the rela-
tive weight of each excited density mode. The parameter
r controls the transition between a homogeneous state
(with constant ψ) and an ordered state (with ψ vary-
ing periodically). It is proportional to the distance from
the melting temperature during crystallization [16], or
in isothermal colloidal or nanocrystal self-assembled sys-
tems, it is determined by the attraction strength between
constituent particles [30] (with larger |r| corresponding to
larger strength, as controlled e.g., by tuning the solvent
of colloidal suspension [31]). In the following we examine
both ranges of small and large |r| values, corresponding
to weak and strong segregation regimes of structural or-
dering. In addition, the coefficient τ of the cubic term
in Eq. (1) is proportional to the strength of three-point
correlation and can be derived from classical dynamic
density functional theory [24].

The free energy functional in Eq. (1) is rotationally
invariant, and can be used to construct and design in-
terparticle pair potentials [10, 32] that are important for
connecting with and designing experimental systems as
conducted previously via atomistic simulations [5, 31].
Details are given in the supplemental material [16], which
also discusses the isotropic nature of the pair interaction
potential in multimode PFC and the importance of the
relative magnitude of the wave numbers Qi in determin-
ing the base symmetry of the selected periodic states.

To examine the ordered states we expand ψ(r) = ψ0 +∑
q aqe

i(q·r+φq), where aq are real amplitudes, q is the
wave vector, φq is the phase and ψ0 the average density.
From Eq. (1) the free energy density (f = F/area) is
given by

f =
∑
q

G(q)a2q

+
w

3

∑
q1q2q3

aq1aq2aq3 cos

(
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)
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where w = 3ψ0− τ and G(q) = {r+λ
∏N
i=1[(Q2

i − q2)2 +
bi]}/2 − τψ0 + 3ψ2

0/2. The parameter w determines the
relative weight of cubic coupling with respect to the quar-
tic one, and plays an important role in controlling the
intrinsic symmetry of the pattern. Two fundamentally
different types of symmetry, corresponding to w = 0 vs
w 6= 0, will be studied below.

Close to the ordering transition the amplitudes aq are
small and the cubic energy term dominates [33]. This
term couples 3 waves with a resonant condition q1+q2+

q3 = 0 and can always reduce the system free energy with
a negative contribution. From a geometric perspective,
a resonant triad of wave vectors forming a closed loop
can form an equilateral, isosceles, scalene, or collinear
triangle, and the following point group symmetries can be
stabilized by the 3-waves coupling: C6, C4, D2, and C1.
Which of them is preferred depends on the number and
nature of the length scales involved [15]. For example,
the chiral symmetry C1 can emerge when N = 3, i.e.,
the wave-vector triplet forms a scalene triangle.

For systems further from the transition, the quartic
coupling would play a larger role. It alone can also sta-
bilize different symmetries provided at least two length
scales are involved [34]. For example, exotic patterns and
superlattices have been observed in shaken convective flu-
ids with 4-waves resonance [35]. From Eq. (2), the quartic
energy term is characterized by tetrads of density wave
vectors satisfying the resonant condition

∑4
i=1 qi = 0.

The basic combinations of wave vectors involve a set of
4 density waves with pairwise vectors {±q1,±q2}, giv-
ing a positive contribution to the free energy. There are
also nontrivial couplings such as non-pairwise resonant
tetrads k1 + k2 + k3 + p = 0, k1 + k2 + p1 + p2 = 0, or
k1 + k2 + p + s = 0 (|k| 6= |p| 6= |s|; see supplemental
Fig. S6 [16]). The related phase factors are nonzero and
similar to the cubic term, this quartic coupling can pro-
vide a negative contribution to the free energy, leading
to the formation of novel ordered and chiral phases.

Additionally, some chiral symmetries may emerge from
the competition between these two nonlinear couplings.
The cubic coupling may stabilize structures with a num-
ber of triads. However, such structures could pay a heavy
quartic energy penalty since they would involve pairwise
wave vectors {±q}. Consequently, a chiral state with
fewer number of density wave vectors forming an asym-
metric set of non-pairwise tetrads may be favored at the
expense of the more symmetric state. The precise num-
ber of positive and negative contributions that appear
due to cubic and quartic couplings is summarized in sup-
plemental Table S1 for several different symmetries [16].

We have conducted numerical simulations to verify the
above analysis, starting from an initially homogeneous
state with random fluctuations of ψ0 = 0 and N = 3. For
simplicity we assume that the density waves for different
length scales are of the same excitation level, i.e., bi = 0.
This allows us to choose a sufficiently large range of λ
(from 0.02 to 100), to tune the system elastic constants
and address the chirality of both “soft” (with small λ)
and “hard” crystals that are beyond the previous study
[15]. The PFC dynamic equation was solved numeri-
cally via a pseudo-spectral algorithm [36] with periodic
boundary conditions. Low-energy states were identified
as steady-state solutions of the purely dissipative dynam-
ics over a number of different random initial conditions.

We first investigate whether chiral structures may
emerge from the quartic coupling alone, by setting w = 0.
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FIG. 1. Stripe superlattices (SSL) obtained from PFC sim-
ulations, for w = 0, λ = 100, and Q1,2,3 = 1, 2,

√
5 (a,b) or

1,
√

2, 3 (c). (a) Chiral SSL at r = −0.05, with Frieze group
p211. (b) Achiral SSL at r = −0.15, with Frieze group p2mm.
(c) Achiral SSL at r = −0.1, with Frieze group p2mg. The
lighter-colored regions correspond to larger values of the den-
sity field ψ. The diffraction patterns are shown in the insets.

In this limit the system has the up-down symmetry of
ψ(r) → −ψ(r). Fig. 1 shows some stripe superlattices
(SSL) that emerge as low-energy stable states, corre-
sponding to Frieze space groups p211 (chiral), p2mm,
and p2mg. The chiral SSL appears when the system is
in the weak segregation regime (i.e., small |r|). As ex-
pected, the characteristic wave vectors of these states
contain non-pairwise resonant tetrads which lead to free
energy reduction [16], as highlighted in Fig. 1.

When w 6= 0 the up-down symmetry of the pattern is
broken, with some sample results shown in Fig. 2. Here
the ratio of system length scales is chosen according to
the symmetry of the base Bravais lattice. For example, a
rectangular base lattice is obtained by setting N = 3 and
Q1,2,3 = 1, µ,

√
1 + µ2 in Figs. 2(a), (b) and (d), while a

square base lattice is set at (1,
√

2, 2) in Fig. 2(c). The
chirality that appears in Figs. 2(a) and 2(b) is due to the
misalignment of the constituent particles from the lattice
symmetry axes, although both the particle and the lattice
(rectangular) are achiral. This is different from Fig. 2(c)
where the chirality arises from the lattice itself (oblique).
More complex scenarios can be obtained in the form of
achiral superlattice, with alternating local orientation of
the particles [Fig. 2(d)]. Interestingly, this superlattice
resembles those observed experimentally in monolayers of
elongated nanoplates (although with smaller periodicity)
[5]. All these results illustrate the pattern anisotropies,
while our simulations are based on the isotropic PFC
model, indicating that the chiral or achiral self-assembly
process is due to the selection mechanism of resonant
wave vectors. As shown in Fig. 2, the diffraction patterns
of chiral (achiral) states are asymmetric (symmetric) and
consist of a number of resonant wave-vector triads and
tetrads, implying the important role played by the inter-
play of cubic and quartic couplings.

To further investigate the conditions of chiral pattern
self-assembly, we construct a sample stability diagram in
the r–w space based on both analytic calculations (see
supplemental material [16]) and numerical simulations.
As shown in Fig. 3, for the rectangular base the following

FIG. 2. Ordered phases and superlattices obtained from PFC
simulations with w = 1, λ = 100, and Q1,2,3 = 1, µ,

√
1 + µ2

(a,b,d) or 1,
√

2, 2 (c). (a) Right-handed and (b) left-handed
chiral rectangular phases at r = −1 and µ = 3/2. (c) Oblique
phase at r = −0.3. (d) Achiral superlattice at r = −1.5 and
µ = 1.35, where solid lines indicate the axes of symmetry.

stable phases were obtained: rectangular, chiral rectan-
gular, rectangular superlattice, stripe, and zigzag SSL.
More results of phase diagrams in terms of r vs length
scale ratio µ are given in supplemental Fig. S9. It is inter-
esting to examine the transition between different states,
particularly how a system with length scales that are
commensurate with a symmetric achiral state can self-
organize into a chiral state. For the example of rectan-
gular state, the reciprocal vectors consist of a symmetric
set of scalene-triangle loops (see Fig. 3). However, when
w is decreased (i.e., weaker cubic coupling) the wave vec-
tor set becomes asymmetric with the reduction of trian-
gle loops, resulting in two degenerate chiral states (left-
and right-handed; see also Figs. 2(a) and 2(b)). This can
be attributed to the corresponding energy contributions
from the cubic vs quartic coupling, with details given in
supplemental Table S1.

Our approach can be generalized to the study and pre-
diction of a large variety of chiral or achiral structures
through controlling the ratio of system length scales (i.e.,
Qi). Some examples are given in Fig. 4, for soft vs rigid
systems with Q1,2,3 = 1,

√
3,
√

7 yielding a triangular
base lattice. For weak segregation and small elastic con-
stants (small λ) the ordered state is achiral with a wall-
paper symmetry group p31m (see Fig. 4(a)). This soft
crystal consists of cluster-like particles similar to those
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FIG. 3. Stability diagram for Q1,2,3 = 1, µ,
√

1 + µ2 with
µ = 3/2 and λ = 100, showing rectangular (Rec), chiral
rectangular (CRec, with degenerate left- and right-handed
states), rectangular superlattice (SL), chiral zigzag SSL, and
stripe (Str) phases. The solid lines were obtained analytically
from free energy calculations, while the shaded regions were
identified from simulations.

observed in colloidal experiments [37] and MC simula-
tions [7]. Further from the ordering transition threshold,
for weaker cubic coupling (smaller w) and larger elastic
constants (larger λ) these clusters are either stretched or
connected, leading to chiral phases with an underlying
triangular symmetry (see Figs. 4(b) and 4(c)). Similarly,
the stability of these states can be attributed to the in-
terplay between cubic and quartic nonlinear couplings.
The achiral p31m state is characterized by a symmet-
ric set of wave vector triads (see Fig. 4(a) inset) and is
therefore stabilized by the cubic energy term. However,
for weaker cubic coupling such a symmetric combination
of density modes causes a larger quartic energy penalty.
This symmetry is then broken via reducing the number
of wave vectors to form an asymmetric set containing
non-pairwise resonant tetrads with negative quartic en-
ergy contribution and less number of triads (Figs. 4(b)
and 4(c)), leading to the chiral phases.

It is interesting to identify the elastic properties of
these chiral and achiral states. For example, a rect-
angular structure is characterized by 8 basic wave vec-
tors: q1,2 = (±1, 0), q3,4 = (0,±µ), q5,6 = (±1,±µ),
q7,8 = (∓1,±µ), corresponding to 3 density modes of

Q1,2,3 = 1, µ,
√

1 + µ2 with amplitudes a1, a2, and
a3 respectively. Given a displacement vector u so that
ψ(r)→ ψ(r+u), in the small deformation limit we obtain
the elastic energy density of the rectangular phase

Eel =
1

2
C11u

2
xx +

1

2
C22u

2
yy +C12uxxuyy + 2C44u

2
xy, (3)

where uij = (∂iuj + ∂jui)/2 is the linear strain tensor.

FIG. 4. Ordered phases for Q1,2,3 = 1,
√

3,
√

7 of triangular
base. (a) Achiral phase with wallpaper plane group p31m,
at r = −0.05, λ = 0.02, and w = 2. (b) Chiral phase with
plane group p2, at r = −1.7, λ = 10, and w = 1. (c) Chiral
stripelike state at r = −2, λ = 10, and w = 1.

The corresponding elastic constants are given by

C11 = 8λµ4[a21(1− µ2)2 + 2a23], C12 = 16λµ6a23,

C22 = 8λµ4[a22(1− µ2)2 + 2a23µ
4], C44 = C12. (4)

The chiral rectangular states are characterized by sub-
sets of 6 wave vectors as shown in Fig. 3: {qi=1,...,6}
and {qi=1,...,4,q7,q8} for right- and left-handed chirality.
The elastic energy density of these two enantiomorphs is

Eel =
1

2
C11u

2
xx +

1

2
C22u

2
yy + C12uxxuyy + 2C44u

2
xy

+ 2C14uxxuxy + 2C24uyyuxy, (5)

where

C11 = 8λµ4[a21(1− µ2)2 + a23], C12 = 8λµ6a23,

C22 = 8λµ4[a22(1− µ2)2 + a23µ
4], C44 = C12,

C14 = ±C12/µ, C24 = ±C12µ. (6)

An important factor given in Eq. (6) is the chiral sym-
metry breaking revealed from two extra elastic constants
C14 and C24, the so-called chiral elastic constants for
systems exhibiting chirality [38]. They are of positive or
negative values in the right- or left-handed state respec-
tively. This sign dependence would provide a viable way
to identify and select the handedness of a chiral system
elastically. For example, a simple shear can cause one
enantiomorph to shrink and the other to expand, which
would be of importance for the study of enantioselectivity
and the control of homochirality with desired handedness
as required in most applications [6].

In summary, our results have shown that systems with
isotropic interactions and underlying achiral base symme-
tries can lead to surprisingly complex ordered and chiral
states and that the formation and stabilization of 2D chi-
ral structures are governed by two basic mechanisms: the
selection of competing length scales that are commensu-
rate to the symmetric base lattice, and the competition
between cubic and quartic couplings that determines the
characteristic density wave vectors of the pattern. As
such our work should open up new avenues for more sys-
tematic investigations exploring the generic mechanisms
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for the emergence of chirality in self-assembling systems.
The approach developed here, which mostly relies on ba-
sic principles of symmetry and length scale competition,
would provide a useful route for predicting and finding
new and surprising chiral structures that possess novel
properties. For example, the control of interaction length
scales and wave vectors selection can be achieved either
through tuning the interaction between building blocks
or particles (via e.g., polymeric or DNA-functionalized
colloidal nanoparticles) or effectively through selecting
particle geometry, as is being actively pursued in exper-
imental and theoretical studies of self assembly [5–14].
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