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We investigate the properties of two-dimensional parity-time symmetric periodic systems whose
non-Hermitian periodicity is an integer multiple of the underlying Hermitian system’s periodicity.
This creates a natural set of degeneracies which can undergo thresholdless PT transitions. We
derive a k · p perturbation theory suited to the continuous eigenvalues of such systems in terms
of the modes of the underlying Hermitian system. In photonic crystals, such thresholdless PT
transitions are shown to yield significant control over the band structure of the system, and can
result in all-angle supercollimation, a PT -superprism effect, and unidirectional behavior.

There has been significant recent interest in the prop-
erties of parity-time symmetric systems, which are in-
variant under the combined action of parity (P) and
time reversal (T ) operations. Such systems were ini-
tially explored due to their connection to the theoretical
foundations of quantum mechanics [1, 2]. Subsequently,
PT symmetric optical systems have garnered attention
as they enable novel capabilities for the control of light
propagation [3–15].

In spite of substantial progress in this field, there re-
main significant challenges and opportunities. First, the
vast majority of PT symmetric structures in optics have
focused on either effective zero-dimensional systems, such
as coupled cavity systems [16–20], or one-dimensional
systems, such as waveguide arrays [21, 22], ring lasers
[23], and one-dimensional lattice systems [24–26]. A
few recent studies of specific multi-dimensional PT sym-
metric systems have demonstrated exotic properties not
found in low-dimensional systems, such as band flatten-
ing and continuous rings of exceptional points [4, 27–29].
Yet despite these promising initial results, a systematic
exploration of higher dimensional PT symmetric systems
has not been previously reported. Second, thresholdless
PT transitions have been recently discovered, for which
the PT symmetry is spontaneously broken in the pres-
ence of an infinitesimal amount of gain and loss [30]. Re-
alizing thresholdless PT symmetry transitions is of in-
terest as they reduce the experimental requirements for
observing exceptional point physics. However, there has
not been a systematic approach for achieving threshold-
less PT symmetry transitions, especially in higher di-
mensional systems. In previous works, one typically ac-
quires a thresholdless PT symmetry transition from point
degeneracies, either accidental [29], or from lattice sym-
metry such as the Dirac point that arise in a honeycomb
lattice [27, 28]. However, such point degeneracies require
careful engineering of the crystal geometry, and are re-
stricted to forming rings of exceptional points at the PT
transition boundary.

In this Letter, we provide a systematic study of higher-
dimensional PT symmetric photonic crystals, and intro-

duce a general mechanism for realizing thresholdless PT
transitions. We consider two-dimensional PT symmetric
photonic crystals (PhC), whose non-Hermitian primitive
cell is an integer multiple of the primitive cell of the un-
derlying Hermitian system. We show that under a very
general set of conditions, such systems always exhibit
a thresholdless PT transition in part of the wavevec-
tor space. Moreover, such a system enables a new form
of band structure engineering, and can result in a PT -
superprism effect, unidirectional behavior, and all-angle
supercollimation, which are distinct from related effects
in Hermitian PhCs [31–35], and not all of which are
present in previous thresholdless transition schemes. Fur-
thermore, our mechanism is readily generalizable to more
complex two-dimensional systems, such as coupled cavity
waveguides [36, 37], and three-dimensional systems.

To illuminate this process, as an example, we consider
the two-dimensional PhC formed of dielectric square rods
with alternating gain or loss of equal magnitude embed-
ded in air depicted in Fig. 1(a). The primitive cell of
this structure contains two square rods, one containing
gain and a neighbor containing loss. In the absence of
gain and loss, the underlying Hermitian system, shown in
Fig. 1(b), has a smaller primitive cell containing a single
dielectric rod. For semantic convenience, we will hence-
forth refer to this larger primitive cell as the ‘supercell,’
and reserve ‘primitive cell’ for the underlying Hermitian
system.

The band structure of the underlying Hermitian sys-
tem, plotted with respect to the supercell, is shown in
Fig. 1(c) and 1(d) for the first and third sets of TM
bands. We see that the band structure is folded along
the kx = π/2a line, where a is the primitive cell lattice
spacing, creating a degenerate contour. As gain and loss
are added to the system, these degenerate contours ex-
perience thresholdless PT transitions immediately, while
neighboring locations in wavevector space undergo ordi-
nary PT transitions, as can be seen in Figs. 1(e)-1(h).
This causes the folded bands to merge together outwards
from the degenerate contour, forming the requisite com-
plex conjugate pairs of frequencies, while the boundary



between the merged and independent regions is a contour
comprised entirely of exceptional points. In the wake of
this folding process, the bands nearly flatten in the x-
direction perpendicular to the degenerate contour. The
total proportion of merged wavevector space as a function
of τ is shown in Fig. S1 in the supplementary material
[38].
We now show that the behavior as observed above is

generally present in PT symmetric PhCs that have an
enlarged primitive cell (i.e. a ‘supercell’) as compared to
the underlying Hermitian system (i.e. a ‘primitive cell’).
The band structure of a PT symmetric PhC is defined
by

[

∇×∇×− (ε(x) + iτg(x))
ω2
n(k)

c2

]

Enk(x) = 0, (1)

in which Enk(x) is the mode profile of the nth band with
wavevector k and frequency ωn(k), ε(x) is the Hermi-
tian dielectric function of the PhC, and τ and g(x) are
the strength and distribution of the gain and loss in the
PhC respectively. We assume that the primitive cell has
a set of lattice vectors {a} such that ε(x + ai) = ε(x),
while the supercell has lattice vectors {A}, which are
usually integer multiples of the primitive cell lattice vec-
tors, Ai =

∑

j nijaj , such that g(x + Ai) = g(x). We
also define the supercell’s reciprocal lattice vectors Bi,
such that Bi · Aj = 2πδij . Given the periodicity of the
supercell, the mode profiles obey the supercell translation
symmetry,

Enk(x+Aj) = eik·AjEnk(x). (2)

Finally, the gain and loss are applied such that g(x) =
−g(−x), and we adopt the convention that τ ≥ 0.
Our objective is to explore the behavior of the band

structure in the vicinity of a particular set of k-points
such as the degenerate contour. Thus, for a region of k-
space in the neighborhood of a wavevector k0, we expand
the supercell wavefunctions at k in terms of those at k0

as

Enk(x) =
∑

m

Cnm(k)ei(k−k0)·xE
(0)
mk0

(x), (3)

where E
(0)
mk

(x) satisfies Eq. (1) with τ = 0, and Cnm are
the complex expansion coefficients [39, 40]. In doing so,
we avoid the difficulties associated with using the Bloch
modes of a non-Hermitian structure [4, 6, 8], and can
normalize the wavefunctions in the usual manner,

∫

SC

ε(x)
(

E
(0)
nk(x)

)∗

·E
(0)
mk′(x)dx = δnmδ(k− k

′), (4)

where the integral is evaluated over the supercell. Fur-
thermore, since the supercell with τ = 0 is an exact N -
fold copy of the primitive cell, there are exactly N re-
ciprocal lattice vectors that are integer multiples of the
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FIG. 1. (Color online) (a) Schematic of the 2D PhC comprised
of square rods with side length 0.6a of dielectric, εdie = 12,
embedded in air, εair = 1, with a square primitive cell side
length of a. The primitive cell is indicated in gray, while the
supercell contains two primitive cells and is marked with a
dashed border. When τ 6= 0, the red rods contain gain, while
the cyan rods contain loss. (b) Schematic of the underlying
2D Hermitian PhC. (c,e) Real part of the frequencies for the
first (blue) and second (red) supercell TM bands when τ = 0
and τ = 1.5. Locations where the bands have merged are
shown in magenta. (d,f) Real part of the frequencies for the
fifth (blue) and sixth (red) supercell TM bands when τ = 0
and τ = 1.5. (g) Imaginary part of the frequencies for the first
(blue) and second (red) supercell TM bands when τ = 1.5.
Black denotes no imaginary component. (h) Imaginary part
of the frequencies for the fifth (blue) and sixth (red) supercell
TM bands when τ = 1.5.

members of {B} which generate the primitive Brillouin
zone from the supercell Brillouin zone, and are denoted as
L1, ...,LN , such that Lj =

∑

i miBi. Thus, as the trans-
lational symmetry of the underlying Hermitian system

is described by the primitive cell, the states E
(0)
mk

(x) sat-
isfy a ‘hidden’ translational symmetry, and can be chosen



such that

E
(0)
mk

(x+ aj) = ei(k+Li)·ajE
(0)
mk

(x). (5)

Here, each supercell band m only satisfies this relation-
ship for a single element Lj [41]. Furthermore, each of the
supercell bands which correspond to the same unfolded
band from the primitive Brillouin zone satisfies Eq. (5)
for a different L.
Upon substituting Eq. (3) into Eq. (1), multiplying

through by (E
(0)
lk0

(x))∗, and integrating over the supercell,
we find the matrix equation

∑

m

[ (

ω2
n(k) − (ω(0)

m (k0))
2
) δlm

c2
+ iτ

ω2
n(k)

c2
Glm

+ s ·Plm − s2Qlm

]

Cnm(k) = 0, (6)

where s = k−k0 and ω
(0)
m (k0) is the frequency of the mth

band of the supercell system when τ = 0. For ease of the
following analysis we have specialized to 2D TM bands,
but a full vectorial treatment is straightforward [38]. The
matrix element Glm contains the effects of modal cou-
pling through the gain and loss,

Glm =

∫

SC

g(x)
(

E
(0)
lk0

(x)
)∗

E
(0)
mk0

(x)dx, (7)

while the elements Plm and Qlm represent the frequency
shifts due to displacements in k-space for the Hermitian
system,

Plm =2i

∫

SC

(

E
(0)
lk0

(x)
)∗

∇E
(0)
mk0

(x)dx, (8)

Qlm =

∫

SC

(

E
(0)
lk0

(x)
)∗

E
(0)
mk0

(x)dx. (9)

Note, the group velocity for each band is given by the
corresponding diagonal element of P as ∇kωm(k0) =
−c2Pmm/2ωm(k0), which is true even for locations
with degenerate frequencies due to the requirement that

E
(0)
mk0

(x) satisfy Eq. (5). Furthermore, the hidden trans-
lational symmetry of the wave functions of the Hermitian
supercell system yields two important restrictions upon
the coupling matrix elements. First, it can be shown that
by breaking up the integrals over the supercell into the
individual primitive cell constituents, Plm and Qlm are

only non-zero if E
(0)
lk0

(x) and E
(0)
mk0

(x) obey Eq. (5) for
the same Lj [38]. Second, the odd parity symmetry of
g(x) results in Gmm = 0. As the wave functions for any
point in k-space form a complete set, Eq. (6) is an exact
restatement of Eq. (1) (although extra considerations are
necessary for vectorial fields [42]).

The application of gain and loss to the Hermitian sys-
tem couples pairs of bands in the supercell system which
originate from the same unfolded band of the primitive

Brillouin zone. Thus, we will assume that we can decou-
ple any such pair of bands from the rest of the system,
and rewrite Eq. (6) for the reduced two-band system as

ω2(k)

c2

[

1 iτG12

iτG21 1

]

C = Ω(s,k0)C, (10)

where Ωij(s,k0) = [(ω
(0)
i (k0)/c)

2− s ·Pii+ s2Qii]δij . By
setting s = 0, the non-Hermitian PhC satisfies Eq. (10)
over all of k-space, and Eq. (10) correctly reduces to
Eq. (3) of Ge and Stone for systems with isolated modes
[30], except that Eq. (10) has been derived for systems
with continuous bands.
However, in contrast to previous works [25, 30], we can

now choose k 6= k0 to understand the band merging pro-
cess. To this end, we select k0 to be a degenerate point of
the supercell Hermitian system with frequency ω(0)(k0),
and solve for the frequencies of the non-Hermitian system
as

ω2

c2
=

2Ω11Ω22

Ω11 +Ω22 ±
√

(Ω11 − Ω22)2 − 4Ω11Ω22τ2|G12|2
.

(11)
As the two supercell bands originate from the same prim-
itive band, the association of Pii with the group ve-
locity yields two related conclusions. First, along the

degenerate contour, ∂ω
(0)
1 (k0)/∂k‖ = ∂ω

(0)
2 (k0)/∂k‖ ≡

−c2P‖/2ω
(0), while perpendicular to the degener-

ate contour, ∂ω
(0)
2 (k0)/∂k⊥ = −∂ω

(0)
1 (k0)/∂k⊥ ≡

−c2P⊥/2ω
(0), as the unfolded band of the primitive cell is

smooth. Thus, the threshold for PT symmetry breaking
to second order in s = (s⊥, s‖) is

τTH ≈

∣

∣

∣

∣

∣

∣

∣

s⊥P⊥

(

1 +
c2s‖P‖

(ω(0)(k0))2

)

+ s2

2 (Q22 −Q11)

|G12|
(

ω(0)(k0)
c

)2

∣

∣

∣

∣

∣

∣

∣

. (12)

To first order, τTH is seen to be strictly dependent upon
the perpendicular displacement in wavevector space from
the degenerate contour, in agreement with the band
structures seen in Figs. 1(e) and 1(f). Furthermore, the
second order corrections yield an increase in the thresh-
old calculated about a particular k0 if s also contains
a component parallel to the degenerate contour. Thus,
the correct (minimum) PT threshold for any point k

is calculated from the closest location on the degener-
ate contour, and is seen to be strictly dependent upon
s⊥, demonstrating that the coupled bands of the non-
Hermitian system merge together directly outwards from
the degenerate contour continuously.
The flattening of the bands as they merge can be un-

derstood by solving for the frequency at the exceptional
point (using s = s⊥),

ωTH(k) ≈ ω(0)(k0)

(

1 +
c2s2⊥(Q11 +Q22)

4(ω(0)(k0))2

)

, (13)
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FIG. 2. (Color online) (a) Non-unitary behavior as a function
of incident angle, φ, and PT symmetry breaking parameter,
τ , for an s-polarized plane wave source with ω = 0.185(2πc/a)
incident upon a PhC slab infinite in the x-direction and with
50 layers in the y-direction for the same system shown in
Fig. 1(a). φ = 0 corresponds to normal incidence in the y-
direction. The PhC slab is surrounded by a passive dielec-
tric with ε = 3. Values of 0 correspond to unitary behavior,
while [−1, 0) signifies absorption, and (0,∞] signifies amplifi-
cation. The reflection and transmission coefficients were cal-
culated using the Fourier Modal Method as implemented in
S4 [43]. (b-c) Plot of the real part of the electric field for
the same structure with τ = 0.65, and φ = 40.9◦ (b), or
φ = 63.8◦ (c). Field plots were generated using the freely
available MaxwellFDFD software package [44].

which is seen to be given by the associated degenerate
frequency with the leading correction being second order
in (1/ω(0)). As τ is increased beyond the threshold value
for a particular location in wavevector space, the dom-
inant change in the frequencies of the two bands is to
acquire imaginary components, leaving the bands nearly
flat after they merge.
The thresholdless PT transition of supercell PT sym-

metric PhCs can also be observed in the non-unitary be-
havior of related finite systems. Figure 2(a) shows the
amplification and absorption as a function of incident an-
gle and τ for a single frequency incident upon a PhC slab
similar to Fig. 1(a), which is infinite in the x-direction,
but finite in the y-direction. The frequency chosen lies
within the range of frequencies comprising the degen-
erate contour of the first pair of bands, Fig. 1(e), and
thus exhibits a thresholdless PT transition at a partic-
ular incidence angle. As τ is increased, the area of the
PT -broken region in k-space is increased, resulting in a
wider range of incident angles which yield amplification.
In Hermitian PhCs, the superprism effect refers to

sharp features in the isofrequency contours of a band
structure, where a small change in the incident angle
of light yields an enormous change in the refraction an-
gle of the light inside the PhC [31–33]. However, the
exceptional contour of a PT PhC separates a region of
non-Hermitian behavior from that of ordinary propaga-
tion. This yields a ‘PT -superprism’ effect, in which a
small change in the incident angle of the signal results
in either unitary or non-unitary behavior. For example,
when τ = 0.65, the system is unitary at φ = 39◦, and yet
exhibits a tenfold increase in the net gain with the small
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FIG. 3. (Color online) (a) Schematic of the 2D PhC comprised
of square rods with side length 0.6a of dielectric, εdie = 12,
embedded in air, εair = 1, with a square primitive cell side
length of a. The primitive cell is indicated in gray, while the
supercell contains two primitive cells and is marked with a
dashed border. When τ 6= 0, the red rods contain gain, while
the cyan rods contain loss. (b,c) Real part of the frequencies
for the first (blue) and second (red) supercell TM bands when
τ = 0 and τ = 1.5. Locations where the bands have merged
are shown in magenta. (d) Imaginary part of the frequencies
for the first (blue) and second (red) supercell TM bands when
τ = 1.5. Black denotes no imaginary component.

change of the incidence angle to φ = 44◦. This effect
could have applications as an optical switch.

Likewise, flat features in isofrequency contours act as
supercollimators, counteracting diffraction for incident
beams with a finite width whose Fourier components lie
within the flat contour [31, 34, 35]. As is seen in the
band-merging process in Figs. 1(c)-1(h), by changing τ ,
flat contours can be designed with a desired width, poten-
tially spanning the entire Brillouin zone, or removed en-
tirely, allowing for tunable supercollimation or all-angle
supercollimation for frequencies with completely merged
bands. This phenomenon is in contrast to the circular
isofrequency contours formed by PT systems stemming
from isolated point degeneracies [27–29]. The effect of su-
percollimation can also be seen in the field profiles of the
finite PhC system, where within the PT -broken region
the wavefunction propagates entirely in the y-direction,
as can be seen in the field profiles at the edge of this re-
gion in Fig. 2(b) and 2(c). Finally, PT PhCs can exhibit
unidirectional behavior [38].

By changing the distribution of gain and loss in the
system while maintaining PT symmetry, we can change
the location of the degenerate contour in k-space. An
example of this is shown in Fig. 3(a), where same under-
lying PhC from Fig. 1(b) is considered with a different
application of gain and loss. The degenerate contour of
the supercell Hermitian system now lies along the X-Y



contour of the primitive Brillouin zone, Fig. 3(b), and as
τ is increased, the PT -broken region is seen to expand
away from this contour, Figs. 3(c) and 3(d). This en-
ables a new form of band structure engineering, as both
the initial choice and potential for electrical modulation
of the degenerate contour result in qualitative changes to
the optical properties of the PhC.

In conclusion, we have demonstrated that the degen-
eracies naturally generated in supercell PT symmetric
PhCs can yield new control over band structure design.
Experimentally, both the PT -superprism effect and all-
angle supercollimation can be observed in the analogous
system with alternating elements of no-loss and double-
loss, and thus should be observable in semiconductor
based systems with embedded absorption [38].
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