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We realized a quantum geometric “charge” pump for a Bose-Einstein condensate (BEC) in the
lowest Bloch band of a novel bipartite magnetic lattice. Topological charge pumps in filled bands
yield quantized pumping set by the global – topological – properties of the bands. In contrast,
our geometric charge pump for a BEC occupying just a single crystal momentum state exibits
non-quantized charge pumping set by local – geometrical – properties of the band structure. Like
topological charge pumps, for each pump cycle we observed an overall displacement (here, not
quantized) and a temporal modulation of the atomic wavepacket’s position in each unit cell, i.e.,
the polarization.

PACS numbers:

Ultracold atoms in optical lattices provide a unique set-
ting for experimentally studying concepts that lie at the
heart of theoretical condensed matter physics, but are
out of reach of current condensed matter experiments.
Here we focus on the connection between topology, ge-
ometry, and adiabatic charge pumping [1–7] for Bose-
Einstein condensates (BECs) in cyclically driven lattice
potentials.

Particles in periodic potentials form Bloch bands with
energy εn(q) and eigenstates |Ψn(q)〉 = exp(iqx̂) |un(q)〉
labeled by the crystal momentum q along with the band
index n. The states |un〉 retain the underlying period-
icity of the lattice, set by the unit cell size a. Motion
in lattices is conventionally understood in terms of these
bands: metals are materials with partially filled bands,
while insulators have completely filled bands. In this
context, a topological charge pump is a counterintuitive
device, where charge motion – conduction – accompanies
the adiabatic and cyclic drive of an insulating lattice’s pa-
rameters. Thouless showed that this conduction is quan-
tized, completely governed by the band-topology [8, 9].
Although various charge pumps have been realized in
condensed matter devices – such as modulated quan-
tum dots [10–12], 1D channels driven by surface acoustic
waves [13], and superconducting qubits [14] – Thouless
pumps remain unrealized in condensed matter settings
but have been demonstrated in recent experiments with
cold-atom insulators [15, 16].

Here we break from this established paradigm for insu-
lators and create a quantum charge pump for a BEC in
a one dimensional (1D) lattice [17–19] occupying a sin-
gle crystal momentum state q. This charge pump gives
non-quantized motion sensitive to the Berry curvature at
q integrated over the whole pump cycle, a local geomet-
ric quantity, rather than a global topological quantity.
Berry curvatures play an important role in condensed
matter systems. An iconic example is the integer quan-

tum Hall effect, where the electrons acquire an anoma-
lous transverse velocity proportional to the Berry curva-
ture and the quantized Hall conductance is given by the
Berry curvature integrated over the whole 2D Brillouin
zone (BZ) [20]; recent cold-atom experiments in 2D have
measured such curvatures integrated over part [21, 22]
or all [23] of the BZ. In an analogous way, 1D lattice
systems, driven cyclically in time t, have a generalized
Berry curvature defined on the 2D effective BZ in q, t
space. This curvature is the source of an anomalous ve-
locity [24], utilized to drive an adiabatic quantum pump-
ing process.

The Rice-Mele model [25–28] of a bipartite lattice with
a unit cell consisting of A and B sites is the paradigmatic
system for understanding quantum pumps. The Hamil-
tonian for this tight-binding model is

ĤRM =−
∑
j

[
(t+ δt) b̂†j âj + (t− δt) â†j+1b̂j + H.c

]
+ ∆

∑
j

(
â†j âj − b̂

†
j b̂j

)
, (1)

where â†j and b̂†j describe the creation of a particle in
unit cell j and sublattice site A or B respectively. The
nominal tunneling strength t is staggered by δt, and the
sublattice sites are shifted in energy by ∆.

We investigated quantum pumping in a novel 1D
(along ex) bipartite magnetic lattice (building on
Refs. [29, 30]) that in effect allowed independent control
of t, δt, and ∆. As shown in Fig. 1(a)-(b), our magnetic
lattice for 87Rb arose from the interplay of one rf and
two “Raman” fields that coupled the |f = 1;mF = ±1, 0〉
“spin” states comprising the f = 1 ground state hyper-
fine manifold, which were Zeeman split by ~ωZ . The
natural units of momentum and energy are given by the
single photon recoil momentum ~kR = 2π~/λR and its
corresponding energy ER = ~2k2R/2m, where m is the
atomic mass. In the frame rotating at the rf frequency
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FIG. 1: Bipartite magnetic lattice. (a,b) Dipole trapped 87Rb
BECs subject to a bias magnetic field B0ez had a Zeeman
splitting ωZ/2π = 0.817 MHz and a quadratic shift ~ε =
0.03ER. These BECs were illuminated by four Raman beams
and an rf magnetic field. Each of the two Raman couplings
(strengths Ω±) was derived from two cross-polarized Raman
laser beams with frequency components ω and ω + δω. (c)
Adiabatic potentials colored according to 〈mx〉 computed for
~(Ω̄,Ωrf , δ) = (6, 2.2, 0)ER, δΩ/Ω̄ = −0.1, and φ = π/4. The
dashed curves plot the ±~Ωx contributions to the potential
experienced by states |mx = ±1〉. (d) Lowest two energy band
energies plotted as a function of φ, otherwise with the same
parameters as (c).

δω and under the rotating wave approximation, the com-
bined rf/Raman coupling lead [31] to the overall Hamil-
tonian

Ĥ =
~2k̂2x
2m

+ Ω(x̂) · F̂ + ĤQ, (2)

where F̂ is the total angular momentum vector
operator. We interpret Ω(x̂) = [Ωrf cos(φ) +
Ω̄ cos(2kRx̂),−Ωrf sin(φ) − δΩ sin(2kRx̂),

√
2δ]/
√

2 as a
spatially periodic effective Zeeman magnetic field, in
which: Ωrf is the rf coupling strength; Ω̄ = Ω+ + Ω− and
δΩ = Ω+ − Ω− are derived from the individual Raman
coupling strengths Ω±; δ= δω−ωZ is the detuning from
Raman/rf resonance; φ is the relative phase between the

rf and Raman fields. Additionally, HQ=−ε(~2Î−F̂ 2
z )/~

describes the quadratic Zeeman shift, where Î is the iden-
tity operator.

This spatially varying effective magnetic field pro-
duces a 1D bipartite lattice [2, 32] with lattice constant
a = λR/2 with adiabatic (Born-Oppenheimer) potentials
depicted in Fig. 1(c). This magnetic lattice is most easily
conceptualized for small δΩ: the Ω̄ cos(2kRx̂) term pro-
vides periodic potentials for the |mx = ±1〉 states spa-
tially displaced from each other by a/2 [dashed curves in
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FIG. 2: Ground state spin projections. (a) Ground state spin
projections at various φ along with the predicted populations
for ~(Ω̄, δΩ,Ωrf , δ) = (4.4, 0, 2.2, 0)ER. The associated adia-
batic potentials [insets in (b)] have minima with spin projec-
tion following the observed population’s trends. (b) Magne-
tization derived from data in (a).

Fig. 1(c)]; the resulting mx = ±1 sites are then staggered
in energy, giving ∆ ≈ ∆max cos(φ), with ∆max = Ωrf/

√
2.

The Ωy term couples these sublattices together: the
rf term −Ωrf sin(φ) generates constant height barriers
(largely specifying t), which become staggered by the
−δΩ sin(2kRx̂) contribution (largely specifying δt).

Figure 1(d) plots the energies of the resulting low-
est two bands as a function of φ (modulating ∆ cosinu-
soidally). Although our lattice is not in the tight binding
limit, the band structure qualitatively matches that of
the Rice-Mele model. In the remainder of this article, we
focus on the lowest band n = 0 and will henceforth omit
the band index.

As illustrated by the shading in Fig. 1(c), in each unit
cell the sublattice sites are “labeled” by their F̂x spin
projection with |mx = −1〉 site on the left and |mx = +1〉
site on the right. To confirm this, we adiabatically loaded
|mz = 0〉 BECs into the lattice’s ground state by simul-
taneously ramping the detuning from 5ER to zero while
ramping on the coupling fields in 10 ms. Following prepa-
ration, our measurement sequence began with a π/2 spin
rotation along ey, allowing us to measure the eigenstates

of F̂x in our F̂z measurement basis. We achieved this π/2
rotation with a 44 µs pulse from an additional rf field
with phase φrot = π/2 and strength ~Ωrf,rot = 2.2ER,
applied while the Raman coupling was greatly reduced
(Ω̄� Ωrf,rot) and the lattice rf coupling was off (Ωrf = 0).
We then abruptly removed the remaining control fields
along with the confining potential and absorption imaged
the resulting spin-resolved momentum distribution after
a 20 ms time-of-flight (TOF) period in the presence of a
magnetic field gradient along ey.

Figure 2 shows the measured F̂x spin composition [42]
and magnetization for adiabatically loaded BECs as a
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function of φ with δΩ = 0. Because ∆(φ) controls the
relative depth of the |mx = ±1〉 wells, we observe ground
states spin populations that follow this “tilt”. For exam-
ple, when φ = 0 or π the double-well is strongly tilted
and we observe the near perfect spin magnetization, con-
sistent with atoms residing in the individual sub-lattices;
in contrast, when φ = π/2, the double-wells are balanced
and we observe equal populations in each |mx〉 state as
expected for equal occupancy of both sub-lattices. Thus
the magnetization [Fig. 2(b)] measures the mean atomic
position within each unit cell, i.e., the polarization.

Having constructed a physical realization of the Rice-
Mele model, and demonstrated the requisite control and
measurement tools, we now turn our attention to topolog-
ical and geometrical charge pumping. These fundamen-
tally quantum mechanical effects rely on the canonical
commutation relation between position and momentum.
Consider a finite wavepacket with center of mass position
(COM) 〈x〉 = 〈Ψ|x̂|Ψ〉, subject to a lattice Hamiltonian
Ĥ that is adiabatically modulated with period T , i.e.,
Ĥ(t) = Ĥ(t+T ). After one cycle, any initial crystal mo-
mentum state is transformed |Ψ(q)〉 → exp(iγ(q̂)) |Ψ(q)〉,
at most acquiring a phase, where q̂ is the crystal momen-
tum operator; this defines the single-period evolution op-
erator ÛT = exp(iγ(q̂)). The time-evolved position oper-

ator Û†T x̂ÛT = x̂−∂q̂γ(q̂) is displaced after a single pump
cycle.

The displacement is particularly simple in two limits:
when just a single crystal momentum state is occupied or
when every crystal momentum state in the BZ, −π/a ≤
q < π/a, is occupied with equal probability. As for our
BEC, when a single |q0〉 state is occupied the displace-
ment is ∆x(q0) = −∂qγ(q)|q0 . Both the dynamical phase
γD(q) = −ε̄(q)T/~ from the time-average energy ε̄(q),

and the geometric Berry phase γB(q) = i
∫ T

0
〈u|∂tu〉dt

contribute to γ(q) = γD(q) + γB(q). In agreement with
conventional descriptions [18, 24, 27], this predicts a

mean velocity v̄(q) = ∂q ε̄(q)/~ − T−1
∫ T

0
F (q, t)dt. The

first term is the usual group velocity and the second term
– the anomalous velocity – derives from the Berry cur-
vature F (q, t) = i(〈∂qu|∂tu〉 − 〈∂tu|∂qu〉). In our experi-
ment, the BEC occupied the minimum of ε(q, t) at q = 0
during the whole pump cycle giving ∂q ε̄(q) = 0, so only
the geometric phase γB(q) contributed to the per-cycle

displacement ∆x(q = 0) = −
∫ T

0
F (q = 0, t)dt.

In the contrasting case of a filled band, the aver-
age group velocity is also zero and the displacement
is ∆x = −a

∫
BZ
∂qγB(q)dq/2π; this is often expressed

as ∆x = a
∫ T

0
∂tγZak(t)dt/2π. The Zak phase γZak =

i
∫
BZ
〈u|∂qu〉dq, a topological property of 1D bands, is

the Berry’s phase associated with traversing the 1D BZ
once, in the same way that γB(q) is a Berry’s phase taken
over a pump cycle.

Our lattice’s Zak phase is plotted in Fig. 3(a); this Zak
phase is qualitatively indistinguishable from that of the
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FIG. 3: Band geometry and topology computed for
~(Ω̄,Ωrf , δ) = (6, 2.2, 0)ER. (a,b) Zak phase and q = 0 Berry
curvature showing the dependence on both δΩ/Ω̄ and φ. In
(b), the arrows show experimental charge pump trajectories
in Fig. 4(b). (c) Adiabatic potentials (displaced vertically
for clarity) computed for a range of φ constituting a com-
plete pump cycle at δΩ/Ω̄ = −0.4 (left panel) and −0.8 (right
panel). Filled circles mark the local energy minima.

Rice-Mele model, with singularities at φ = ±π/2 and
δΩ = 0, signaling topological phase transitions across
these points. For filled band experiments, pumping tra-
jectories encircling these points give quantized charge
pumping [15, 16]. Figure 3(b) shows the richly structured
Berry curvature F (q = 0, φ) relevant to our experiment,
which will be explored next.

For our charge pump experiments, we linearly ramped
the pump control parameter φ(t) = 2πt/T , effectively
modulating the lattice potential in two qualitatively dif-
ferent regimes (separated by a critical |δΩ/Ω̄| ≈ 0.63).
In the first [Fig. 3(c), left panel] the sublattice sites rise
and fall but the local potential minima are essentially
fixed in space; in the second [Fig. 3(d), right panel] each
minimum is only present for part of the pump cycle (the
potential appears to “slide” by ±a per cycle). As these
schematics imply, the associated pumping process gives
either no displacement, or a quantized per-cycle displace-
ment ±a for classical trajectories [33]. In quantum sys-
tems, however, geometrical pumping is controlled by the
Berry curvature, giving non-quantized per-cycle displace-
ments that can in principle take on any value.
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FIG. 4: Geometric charge pumping. (a) Magnetization measured while linearly ramping φ with period T = 2 ms, along
with the prediction for ~Ω̄ = 6.38(2)ER, ~δΩ = 4.50(2)ER, and ~Ωrf = 2.20(3)ER. (b) Displacement plotted versus φ/2π
(number of pump cycles). Trajectories i to iii are taken at δΩ/Ω̄ = 0.7, 0, and −0.7, respectively; in each case ~Ω̄ ≈ 6ER and
~Ωrf = 2.20(3)ER. Solid curves: simulation of charge pump in the trap. The small displacement near φ = 0 is introduced
by our loading procedure. (c) Measured displacement ∆x per pump cycle (symbols), along with the prediction obtained by
integrating the Berry curvature over our pumping trajectory (solid curve). The uncertainty bars represent 95% confidence
interval.

We studied adiabatic charge pumping in this lattice in
two ways: in the first we observed the F̂x-magnetization,
giving the polarization within the unit cells, and in the
second we directly measured the displacement ∆x of our
BEC. In both cases we loaded into the lattice’s ground
state and linearly ramped φ = 2πt/T , driving the Hamil-
tonian with period T [33]. As shown in Fig. 4(a), the
magnetization oscillated with the T = 2 ms period,
demonstrating the periodic modulation of polarization
per cycle. In good agreement with our data, the solid
curves in Fig. 4(a) show the predicted behavior given
our known system parameters. This agreement persists
to long times: for example after 50 pumping cycles (for
t = 100− 110 ms) the contrast is unchanged, confirming
the adiabaticity of the process [33].

Lastly, we performed a charge pumping experiment
by directly measuring the cloud’s position in-situ for a
range of δΩ/Ω̄. We obtained in-situ density distribu-
tions using partial-transfer absorption imaging [34] in
which ≈ 6.8 GHz microwave pulses transferred ≈ 5%
of the atoms from |f,mz〉 = |1,−1〉 to |2, 0〉 where they
were absorption imaged. This technique allowed us to re-
peatedly measure the in-situ density distribution for each
BEC. Each observed displacement was derived from dif-
ferential measurements of the cloud position taken just
before and just after the pumping process, rendering our
observations insensitive to micron-level drift in the trap
position between different realizations.

Figure 4(b) shows data taken for δΩ/Ω̄ = 0.7, 0, and
−0.7 along trajectories i, ii, and iii, respectively, with
both increasing and decreasing phases. Our data dis-
plays two expected symmetry properties. First, since the
displacement ∆x(q = 0) = −

∫
F (q, φ)dφ depends on the

sign of the acquired phase, the direction of motion is re-
versed when the ramp direction is inverted. Secondly as
shown in Fig. 3(b), F (q = 0, φ) is an odd function of

δΩ/Ω̄, so the direction of motion is also reversed when
δΩ/Ω̄→ −δΩ/Ω̄. Thus ∆x is an odd function of both φ
and δΩ/Ω̄, and as expected we observe no motion when
δΩ/Ω̄ = 0.

The displacement was markedly non-linear when the
pumping time became comparable to our trap’s 80 ms
period, showing the influence of the confining poten-
tial [43]. We included the harmonic potential in our real-
space simulations by directly solving the time-dependent
Schrödinger equation for our system [35]. The simulated
results [Fig. 4(b), solid curves] agree with our observa-
tions. To extract the per-cycle displacement due to geo-
metric pumping, we fit the sinusoidal predictions of our
model to each data trace, with only the overall ampli-
tudes and a small vertical offset as free parameters, giving
the short-time per-cycle displacement [33]. Figure 4(c)
shows these per-cycle displacements for a range of Ra-
man imbalances.

The in-situ cloud typically had a Thomas-Fermi radius
of 30 µm, corresponding to a small momentum width of
0.004kR for our BEC. We estimated the thermal fraction
to be ≈ 5% given by our ≈ 20 nK temperature (momen-
tum width of 0.24kR). Moreover, the per-cycle displace-
ment is nearly independent of q for |q| < 0.25kR [33].
These allow us to compare the data with the expected
displacement from integrating q = 0 Berry curvature
[Fig. 4(c), solid line], showing an excellent agreement and
confirming the geometric origin of our quantum charge
pump.

Our magnetic lattice enables new experiments with
1D topological lattices. Berry curvatures at q 6= 0 can
be probed by performing the charge pump pairwise at
±|q| (for example prepared via Bloch oscillations [36]).
The dynamical phases in these cases are opposite and
therefore cancel while Berry curvatures (even in q) con-
tribute equally to the displacements [33]. Furthermore,
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protected edges states, a hallmark of topological systems,
will be present at the interface between regions charac-
terized by different topological invariants [37–39]. Since
in our lattice the topological index is set by the rf phase,
a bulk topological junction can be generated by replacing
the rf field with an additional co-propagating pair of Ra-
man laser beams in which just one beam has an abrupt π
phase shift in its center. This provides a static model of
the soliton excitation mode in polyacetylene [25, 40]. Ter-
minating our lattice with hard-wall boundaries will give
rise to similar end states – somewhat analogous to Majo-
rana fermions in 1D topological superconductors [38, 41]
– with a spin character.
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