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Helicobacter pylori swims through mucus gel by generating ammonia that locally neutralizes the
acidic gastric environment, turning nearby gel into a fluid pocket. The size of the fluid zone is
important for determining the physics of motility: in a large zone swimming occurs as in a fluid
through hydrodynamic principles, while in a very small zone motility could be strongly influenced
by nonhydrodynamic cell-mucus interactions including chemistry and adhesion. Here we calculate
the size of the fluid pocket. We model how swimming depends on the de-gelation range using a
Taylor sheet swimming through a layer of Newtonian fluid bounded by a Brinkman fluid. Then
we model how de-gelation range depends on swimming speed by considering advection-diffusion of
ammonia exuded from a translating sphere. Self-consistency between both models determines the
values of swimming speed and de-gelation range. We find that H. pylori swims through mucus as if
unconfined, in a large pocket of Newtonian fluid.

Microorganisms often navigate complex media and
geometries, including during infection and mammalian
fertilization [1]. The effect of non-Newtonian environ-
ments [2–24] and geometrical confinement [25–34] have
both been the subject of much research, including situa-
tions combining the two [35–37]. Usually, medium rheol-
ogy and geometrical configuration are considered a back-
ground environment that microorganisms do not change
during swimming [38]. Here, we address the active cre-
ation of heterogeneous geometries in complex environ-
ments by swimming microorganisms, during which geom-
etry, medium response, diffusion, and motility couple to
mutually influence each other. For example, E. coli can
mechanically deplete polymer concentration near their
fast-rotating flagella, decreasing the local viscosity [39].
In this paper we concentrate on another such example,
the local chemical alteration of gastric mucus from gel to
sol by Helicobacter pylori [40].

A ∼200µm gastric mucus layer forms a barrier between
the acidic (pH 2) environment inside the stomach and the
epithelial cells lining the stomach (Fig. 1) [41, 42]. At bi-
ological concentrations, the mucus is a gel at acidic pH,
and a viscoelastic solution with little elasticity [43, 44]
for pH > 4. H. pylori survives in the acidic stomach by
using urease to convert ambient urea into basic ammo-
nia, neutralizing the acid in its vicinity [42]. The same
mechanism allows it to traverse the mucus: the neutral-
ization elevates the pH, locally de-gelling the mucus into
a solution that the bacterium can move through [40, 45].
We examine the dynamics of swimming through this mu-
cus layer when a bacterium (∼3µm cell body) is far away
from the epithelial boundary.

Although Celli et al. [40] showed that H. pylori can
de-gel surrounding mucus into a navigable viscous so-
lution, their study left unresolved the correct physical
picture of motility in vivo. In their in vitro experiments
bacteria raised pH and induced de-gelling globally, but
in vivo, global neutralization is unlikely and hence de-

FIG. 1. H. pylori swims through the gastic mucus layer lining
the stomach by locally neutralizing the acidic environment
with ammonia, which de-gels the mucus into a fluid.

gelling must be localized. In this paper we address the
size of this de-gelled region, which is important since it
affects the physical mechanism of motility: if the de-
gelled region is large, then the bacterium swims as in
a viscous fluid using the principles of low-Reynolds num-
ber hydrodynamics, while if the de-gelled region is small,
then motility may be controlled by contact interactions
with the mucus and chemical kinetics of neutralization
and de-gelation.

This scenario couples swimming hydrodynamics and
chemical diffusion. First, we model how the swimming
speed depends on the de-gelation range using an analytic
hydrodynamic model of a Taylor sheet swimming by de-
formations through a layer of Newtonian fluid bounded
by a Brinkman fluid. Second, we model how the de-
gelation range depends on swimming speed by using an
advection-diffusion model of ammonia exuded from a
translating sphere. The coupled problem demands that
both speed and neutralization range are in agreement
for both models. We show that swimming occurs in a
relatively large zone of Newtonian fluid, and that the as-
sumptions within our approach are consistent with the
result. We discuss whether recent artificial swimmers
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FIG. 2. a) Taylor swimming sheet in layer of Newtonian fluid of thickness h confined by Brinkman medium representing mucus
gel. b) Swimming speed normalized by unconfined speed versus layer thickness h for constant stroke, porosity ǫ = 0.95, and
various values of resistance α. Solid black line is the result for a solid no-slip boundary at distance h. c) Power dissipated
normalized by power dissipated by unconfined swimmer for cases plotted in (b). d) Swimming speed normalized by unconfined
speed versus layer thickness h for constant power dissipation, porosity ǫ = 0.95, and various values of resistance α.

mimicking H. pylori’s neutralization strategy [46] may
be in the same swimming regime as the bacteria.
Effect of local confinement by mucus on swim-

ming. We consider a waving two-dimensional sheet in
the frame of the sheet, so material points can be labeled
by x (Fig. 2). Material points are displaced in the y-
direction from y = 0 by the deformation b sin(kx − ωt).
The half-space above the sheet is a Newtonian fluid for
y < h, and a Brinkman medium for y > h. Brinkman
media are appropriate representations of dilute gels [5]
(gastric mucus is 3 − 5% w/v [45]) when the swimmer
does not directly contact the gel, as in our case, and the
gel network is not deformed by the swimmer [7].
The velocity field satisfies incompressibility (∇·v = 0)

everywhere, Stokes equations in the Newtonian fluid, and

−∇p+
µ

ǫ
∇

2v −
µα2

ǫ
(v +Vs) = 0 (1)

in the Brinkman fluid, where α =
√

ǫ/K is the resistance,
K is the permeability, and ǫ is the porosity (volume frac-
tion of liquid) of the gel. We work in the frame of the
sheet swimming with velocity Vs, so (v +Vs) is the ve-
locity of the fluid relative to the gel network, which is
stationary in the lab frame.
At the sheet surface we use no-slip boundary condi-

tions, v(x, b sin(kx − ωt)) = −bω cos(kx − ωt). At the
interface between the fluid and Brinkman medium, we
use boundary conditions maintaining continuous veloc-
ity, v−(x) = v+(x), where ± corresponds to the limit
y → h from below (−) or above (+); and continuous
traction, [−I(p+ − p−) + µ(ǫ−1∇v+ − ∇v−)] · ŷ = 0,
where I is the identity [47]. The full velocity field can be
obtained from a boundary perturbation expansion in bk
as in Taylor [48]. The swimming velocity is obtained by
imposing the force-free condition on the swimmer [49].
In Fig. 2b, the swimming speed normalized by the un-

confined (Newtonian) swimming speed VN is plotted as

a function of layer height h for various values of resis-
tance α, constant values of porosity ǫ = 0.95, and con-
stant swimming stroke (ω, b, k constant). The effect of
confinement by gel is only large when hk < 1, and is
very small for hk > 3. We examine various limits to
check the result. As α → 0, the Newtonian swimming
speed is recovered. As α → ∞, the swimming speed
confined by a solid boundary at distance h [50] is recov-
ered (solid black line). Finally, as h → 0, we recover the
swimming speed of a sheet in a Brinkman medium [5],
Vs =

1
2
ωkb2

√

1 + (α/k)2.

It is also interesting to examine the results for con-
stant power. The expended power can be calculated by
integrating the power per unit area at the swimmer sur-
face [

∫

v · τ · n̂ dA with τ the stress tensor], or by the
sum of power lost by viscous dissipation and the ac-
tion of Darcy resistance on the fluid [−

∫

τ · ∇v dV +
µα2

ǫ

∫

(v + Vs) · (v + Vs) dV ]. Agreement between the
two methods provides an internal check on our results.
The lowest order contribution to the power comes from
the O(bk) velocity field and is shown in Fig. 2c. Power
increases as the gap size h decreases. In the limit h → 0,
we obtain the power expended in a Brinkman medium,
1
2
b2ω2k(1 + (α/k)2 +

√

1 + (α/k)2), which agrees with a
direct calculation of power expended by Taylor sheet in
a Brinkman medium with no Newtonian layer [51]. The
resulting swimming speed at constant power is plotted
in Fig. 2d. In contrast to the constant stroke case, the
swimming speed remains finite as h → 0. However, in
both cases the effect of confinement by gel is only large
when hk < 1, and is very small for hk > 3.

Effect of swimming on size of local confinement.

We examine the range of neutralization and de-gelling
using a simplified model that treats the bacterium as
a spherical body. Neutralization is controlled by a
reaction-diffusion process involving urease, urea, ammo-
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FIG. 3. a) Concentration profile due to diffusion near sphere in a uniform background flow in +x direction for Pe = 0.006.
C0 is the concentration at the sphere surface. b) Contours of concentration 0.01C0 corresponding to de-gelation boundary for
various Pe. We take the layer thickness for the confined sheet model from the distance in the y-direction (h) to the de-gelation
boundary. c) De-gelation range h as a function of velocity, for the cell-parameters specified in the text.

nia, (bi)carbonate, and H+. Urease may act within or be
bound to the cell [42], and in any case urease and urea
diffuse more slowly than protons or ammonia hence have
less effect on the neutralization range. Thus we assume
that the pH is controlled by the diffusion of ammonia
through the aqueous de-gelled solution surrounding the
cell, with the same diffusion constant as in water. We
consider the diffusion of ammonia rather than H+ since
H+ is supplied through the mucus and diffuses in mucus
gel 4-10 times slower than in water [41]; however, using
reasonably faster or slower diffusion constants does not
change our conclusions [52]. Since H. pylori regulates
the pH near its cell wall [42] (we assume a near-neutral
pH 6), and the critical de-gelation pH is near 4 [40], we
model the concentration of ammonia at the cell surface
as a constant and at the boundary of the de-gelled region
as decreased by a factor of 100.

The diffusion of ammonia is affected by the swimming
flow of H. pylori, which we approximate as advection-
diffusion from a stationary sphere in the presence of a
uniform background flow at the swimming velocity. Al-
though this flow captures the dominant effect of advec-
tion due to swimming translation, it differs from that of
a force-free bacterium since it results in a net force on the
sphere, but as discussed later, the difference does not af-
fect our conclusions. Advection-diffusion is controlled by
the Peclet number, Pe = 2aVs/D, which weighs the rel-
ative importance of advection to diffusion. We estimate
a typical Peclet number of 0.006 from the thickness of
H. pylori (a = 0.5µm), the Newtonian swimming speed
(Vs = 10µm/s [53]), and the diffusion constant of am-
monia in water (D = 1.64 × 10−9 m2/s [54]); hence the
concentration profile is dominated by diffusion. If the
bacterium swims faster due to the effects of confinement,
the Peclet number may increase. For small Peclet num-
bers (Pe < 1), the solution to this advection-diffusion

problem was found via singular perturbation theory by
Acrivos and Taylor [55], and we use their solution here.
In Fig. 3a we show contours of equal concentration

near the sphere (surface concentration c0) obtained from
the Acrivos and Taylor solution for Pe = 0.006. In Fig.
3b we show the concentration contour c0/100, which rep-
resents the boundary of the de-gelled region, for various
Pe. As Pe increases (i.e., swimming velocity increases)
the de-gelled region is swept into a narrower shape. The
gap size h in our 2D swimming model is perpendicular to
the traveling wave, so corresponds to the vertical distance
from the sphere to de-gelled boundary. By varying the
Peclet number, we deduce a de-gelation range hA−D(Vs)
as a function of Vs (Fig. 3c).
Self-consistent estimate of range of de-gelation.

Finally, we estimate the range of de-gelation for swim-
ming H. pylori by demanding that the swimming speed
and de-gelation range are consistent with both the hy-
drodynamical swimming calculation and the diffusion-
advection calculation. Graphically, the swimming speed
and gap size are determined by finding the intersection
of plots of the hydrodynamic swiming speed V H

s (h) and
hA−D(Vs) from diffusion-advection (Fig. 4). The uncon-
fined speed of the swimming sheet is set to the observed
swimming speed (10µm/s [53]) of H. pylori in buffer solu-
tion, and we assume the effect of confinement is the same
as for a sheet. Since the pitch (P ) of H. pylori flagella has
not been measured we obtain the wavenumber k = 2π/P
from the value P = 1.58µm for V. alginolyticus [53]. The
resulting de-gelation size is h∗

≈ 175/k, or 44µm, much
larger than the pitch or cell body. Therefore swimming
occurs in the unconfined regime and is largely unaffected
by the mucus gel surrounding the de-gelled region.
The result is also self-consistent with our assumptions.

The bacterium is in a large region of dissolved mucin,
so treating diffusion as in aqueous solution is appropri-
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FIG. 4. Estimate of de-gelation range by simultaneous solu-
tion of hydrodynamic swimming and advection-diffusion mod-
els. The solution (h∗ = 175/k, or 44µm for parameters in
text) is deep in the unconfined regime for all values of α at
constant stroke or power. Inset: the solution is stable to per-
turbations; a fluctuation to h = h∗

− δh leads to velocity
V H(h) with hA−D(V H(h)) closer to h∗ (horizontal line).

ate. Since h∗ is large, the swimming speed is close to the
Newtonian speed and the Peclet number is small. Since
the Peclet number is so small, the concentration pro-
file is diffusion-dominated and the details of the velocity
field (e.g., due to a force-free swimmer or non-spherical
geometry) will not significantly affect the result. The ef-
fect of confinement on swimming speed was calculated
for a 2D sheet rather than a 3D bacterium (although the
observed speed of a 3D bacterium was used for the un-
confined speed), but based on the effect of confinement
by solid boundaries, we expect that taking into account
helical flagellar geometry and finite length effects should
make the swimming speed even closer to the unconfined
speed (see supplemental materials for details [58]). Fi-
nally, since we are in the unconfined regime, the results
are the same for constant stroke or constant power, and
if one calculated the swimming speed by matching the
torque exerted in the presence of confinement to the
rotation-torque curve of a bacterial motor, one would find
a swimming speed very close to the unconfined speed as
well.

The self-consistent solution found in Fig. 4 is sta-
ble. Consider a fluctuation in size of the de-gelled region
to h = h∗ − δh. Then the resulting swimming veloc-
ity V H(h) is slightly larger than the self-consistent ve-
locity (intersection of horizontal line in inset of Fig. 4
with hydrodynamic curve). Consequently the gap size
hA−D(V H(h)) at the new swimming velocity is closer to
h∗ than the original fluctuation (intersection of horizon-
tal line in inset of Fig. 4 with advection-diffusion curve).
Repeating the process brings the swimming velocity and
gap size back to the self-consistent point. In contrast, if
near h∗ the diffusive curve were less sloped in magnitude

than the hydrodynamic curve, the self-consistent solution
would be unstable by similar reasoning.
Discussion. Our calculation makes clear predictions:
the size of the de-gelled region should be large compared
to the size of the cell, the swimming speed of H. pylori
through mucus gel should be close to that in Newtonian
buffer, and the swimming should occur by the mecha-
nisms of low-Reynolds number hydrodynamics. Future
experiments may be able to measure the range of de-
gelation and neutralization using microrheological bead
tracking and pH-sensitive dyes, respectively, perhaps si-
multaneously observing swimming speeds and behavior
in locally (rather than globally) de-gelled mucus.
We assumed that once the pH is raised above 4, the

mucus is de-gelled, i.e., that de-gelation occurs on a fast
time-scale relative to changes in pH. So far, experiments
have not measured the de-gelation timescale of gastric
mucus; in Celli et al. [40], experiments measuring the
time-course of de-gelation were likely dominated by the
kinetics of ammonia production rather than de-gelation.
Experiments probing de-gelation timescales could be use-
ful. For our assumption to be valid, de-gelation of a 10
µm layer of mucus should take much less than a second.
Recently, Walker et al. [46] have fabricated artificial

magnetic propellers with surface-bound urease to mimic
the motility strategy of H. pylori through mucus. In our
calculation, the main difference between the artificial pro-
peller and the bacterium is that in the advection-diffusion
model the propeller generates a constant flux instead of
a constant concentration at its surface. Based on the in-
formation provided in Ref. [46] we cannot quantitatively
estimate the neutralization zone, but since they empha-
size that swimming is only successful for very small acid
concentrations, it is possible that the generated flux of
ammonia is barely enough to locally neutralize the acid,
implying a small neutralization zone. If the neutraliza-
tion zone is small enough, propeller motility may be con-
trolled by different physics (close-range mucus contact
and chemistry) than H. pylori motility.
Here we considered the motility of a single bacterium

rather than a group of bacteria. If multiple bacteria
swim through mucus very close together, they may be
effectively treated as a larger sphere in our advection-
diffusion model, but if they are separated by intermediate
distances richer phenomena may occur due to interaction
effects from coupled advection and swimming.
The effects of confinement by mucus on a swimmer

may also have application to bacteria or sperm swim-
ming near, but not within, mucus in respiratory or re-
productive tracts as well as the digestive tract. Our self-
consistent approach could be applicable to other cases
of motility with local alteration of the environment. For
example, for flagella that mechanically deplete polymer
solutions, the torque on the flagella is dependent on the
depletion range and magnitude, while depletion is depen-
dent on the torque via the rotation rate and geometry.
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