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The anyonic excitations of a spin-liquid can feature fractional quantum numbers under space
group symmetries. Detecting these fractional quantum numbers, which are analogs of the fractional
charge of Laughlin quasiparticles, may prove easier than the direct observation of anyonic braiding
and statistics. Motivated by the recent numerical discovery of spin-liquid phases in the kagome
Heisenberg antiferromagnet, we theoretically predict the pattern of space group symmetry fraction-
alization in the kagome lattice SO(3)-symmetric chiral spin liquid. We provide a method to detect
these fractional quantum numbers in finite-size numerics which is simple to implement in DMRG.
Applying these developments to the chiral spin liquid phase of a kagome Heisenberg model, we find
perfect agreement between our theoretical prediction and numerical observations.

Two-dimensional quantum spin liquids are distin-
guished by emergent excitations, ‘spinons,’ which carry a
spin-1/2 moment, in striking contrast to all local excita-
tions (e.g. magnons) which carry integer spin. Like the
fractional charge of the Laughlin quasiparticles,[1] their
spin is an example of ‘symmetry fractionalization:’ topo-
logical excitations can carry quantum numbers which are
forbidden for local excitations. Wen proposed that in
addition to charge and spin, the quantum numbers of
space group (SG) symmetries, such as translations and
rotations, could also become fractional. [2, 3] For exam-
ple, roughly speaking a π-rotation could have a quantum
number of ±i when acting on a topological excitation,
while any local excitation has quantum number ±1. Sub-
sequent work revealed a zoo of gapped spin-liquid phases
distinguished by the fractional SG quantum numbers of
their excitations, which provide finer-grained invariants
beyond their anyonic braiding and statistics. [2–10]

It is important to understand the type of symmetry
fractionalization in a spin liquid since it provides one of
the few potential experimental probes of fractionalized
spin liquid physics. For example, SG fractionalization
has spectroscopic signatures,[2, 3, 11] and determines the
nearby ordered phases that are connected to the spin liq-
uid via continuous phase transitions.[5, 12–15] Great the-
oretical progress has been made in classifying the possible
patterns of SG symmetry fractionalization,[7, 9] though
it has yet to be detected in a Heisenberg spin model.[16]

Here we report the direct numerical detection of SG
symmetry fractionalization in a Heisenberg antiferromag-
net on the kagome lattice. Recently it was discovered
that introducing chiral symmetry breaking terms [17, 18]
or further-neighbor exchange interactions [19–22] can sta-
bilize a chiral spin liquid (CSL). Proposed by Kalmeyer
and Laughlin, the CSL is the magnetic analog of the
ν = 1

2 bosonic quantum Hall effect, with a robust spin-
carrying gapless edge.[23–25] The CSL contains a sin-
gle type of anyonic excitation, the S = 1/2 spinon ‘s,’
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FIG. 1. a) Symmetry operations and two typical edges in nu-
merical studies of the kagome chiral spin liquid. b) Entangle-
ment spectrum {Ea} = − log(ρL) of the YC8 s-sector, plotted
against the momentum ka around the cylinder. The lowest
pair is a ‘Kramers doublet’ under the anti-unitary Rx, indicat-
ing (R2

x)s = −1. Since the pair occur at the same T1 momen-
tum, (RxT1)2 = −1 as well, as expected from (RxT1)2s = −1.

which has semionic self-statistics. In close analogy to the
Laughlin flux-threading argument, when 2π-flux of the
Sz spin rotation is thread through the system, the flux
nucleates a spinon s. Since s carries Sz = ± 1

2 itself,
the flux insertion has induced spin, which is the famous
spin-Hall response σspin

xy = ± 1
2 . The sign of the response

depends on the parity-breaking chirality.

Previous studies have confirmed fractionalization of
SO(3)-symmetry in the kagome CSL, which can be in-
ferred from the fractional spin-Hall response[21]. In this
work, we theoretically predict the pattern of SG symme-
try fractionalization in an SO(3)-symmetric kagome CSL,
and develop a numerical framework for detecting SG frac-
tionalization using the ground states obtained from cylin-
der DMRG. Surprisingly, we prove that only a single frac-
tionalization pattern is possible for an SO(3)-symmetric
kagome CSL, in sharp contrast to the many possibilities
in a Z2 spin-liquid [5, 13]. SG symmetries are not sim-
ple to probe in ‘snake’ DMRG, [26] since the chosen 1D
ordering of the sites breaks the SG symmetries. We in-
troduce a technique, the ‘classical product state (CPS)
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trick,’ for detecting SG symmetry fractionalization. The
CPS trick also drastically simplifies the measurement of
the topological S and T matrices,[27] which previously re-
quired Monte Carlo sampling as expensive as the DMRG
itself.[28] Using both finite and infinite DMRG on the J1-
J2-J3 Heisenberg model, we find perfect agreement with
theoretical predictions. The methods introduced here are
applicable to many other spin liquid models.

Theory of symmetry fractionalization in a CSL.

In addition to SO(3) rotations of spins, the kagome
model has SG symmetries illustrated in Fig. 1. T1,2 de-
note translations along Bravais vectors a1,a2, and C6 is
a hexagon-centered π/3 rotation. In particular there are
two inequivalent inversion operations: hexagon-centered
Ih = (C6)3, and site-centered Is = T1Ih. Both reflec-
tion symmetry and time-reversal are spontaneously bro-
ken by the chiral order parameter of the CSL. However,
their combination is preserved, so we define anti -unitary
reflections Rx, Ry, whose orientation with respect to the
Bravais vectors is illustrated in Fig. 1. The SG gener-
ators satisfy the algebraic conditions summarized in the
left column of Tab. I, where e represents the identity el-
ement. Throughout, cylinder types are labeled as in Ref.
[29].

The symmetry fractionalization[2, 7, 9] of the CSL is
encoded in how symmetry operations act on individual
spinons. For example, when the inversion Ih acts on a
spinon, it may acquire a phase ‘±i,’ which is ‘fractional’
since on local objects Ih = ±1. Other symmetry-group
relations can be similarly fractionalized, which we tabu-
late in Tab. I. In each case, there is a group relation that
should produce the identity (like I2h = e) which instead
produces a phase, i.e., the spinon carries a ‘projective’
representation. There is a constraint on the phase: since
a pair of spinons annihilates to the vacuum, s × s = 1,
and the vacuum can’t be fractionalized, the phases are
Z2-valued, ±1. The phase factors associated with the
last two algebraic identities in Tab. I, however, are not
well-defined, because one can redefine T1, T2 by the Z2

factors Ti → ±Ti, changing the phase factor. [2, 7, 9] In
contrast, for the first six relations such a redefinition can-
cels, so these six Z2-valued phase factors are the symme-
try fractionalization invariants of a CSL on the kagome
lattice.

We now derive the symmetry fractionalization of the
CSL and a set of concrete measurements to detect it.
In general, there can be several possible symmetry frac-
tionalization patterns consistent with a particular anyon
model, and it is an energetic question which pattern hap-
pens to be realized (this is the case for the time-reversal
symmetric Z2 spin-liquid, for example). For the CSL,
however, we will prove there is actually a unique pos-
sible pattern so long as SO(3)-symmetry is preserved.
We do so by first determining how each of the invari-
ants can be measured from the degenerate ground states
of a long (or infinite) cylinder,[30] and then constraining

Algebra Fractionalization Measurements

T1T2T
−1
1 T−1

2 = e −1 e i (Ps−P1)

(C6)6 = (Ih)2 = e −1 Qs(Ih)/Q1(Ih)

(Rx)2 = e −1 Rx-SPT on YC8

(Ry)2 = e −1 Ry-SPT on XC8

RxT1R
−1
x T1 = e +1 RxT1-SPT on YC8

RxT2R
−1
x T−1

2 T1 = e −1 RyTy-SPT on XC8

C6T1C6
−1T−1

2 = e +1 (gauge fixing) N/A

C6T2C6
−1T−1

2 T1 = e +1 (gauge fixing) N/A

TABLE I. Each group relation (left column) can be fraction-
alized when acting on a spinon, producing a phase ±1 we
have predicted for the kagome CSL (middle column). The
first two invariants can be measured from global SG quantum
numbers, while the anti-unitary reflection invariants Rx, Ry
require measuring 1D-SPT invariants. The last two relations
are not invariant under redefinitions of the generators by ±1,
so do not produce meaningful invariants.

FIG. 2. Finite DMRG geometries used for XC8. Geometries
(a) and (b) have an odd number of edge spins, trapping a
spinon, from which we compute Qs(Ih), Qs(Is). From (c), we
compute both Q1(Ih) and Q1(Is). The results are tabulated
Fig. 3. A similar set of geometries is used for YC8, whose
edge differs by 90-degrees.

these measurements on general grounds.

Consider, for example, the relation (I2h)s = −1. Mea-
suring such a phase would seem to be a contradiction,
since when Ih acts on a finite number of spins it must
give ±1 by its very definition. The key insight is that
rather than trying to act with Ih on a single spinon, we
create a pair of spinons related by Ih, and measure the
global Ih quantum number of the pair. Strictly speak-
ing, we are interested in their quantum number relative
to that of the vacuum. If −1, it is as if Ih · s = ±i · s
when acting on each spinon individually, which indicates
fractionalization. The robustness of this procedure was
argued in Ref. [30].

In practice, it is not necessary to actually nucleate



3

and manipulate a spinon pair. Instead, we make use
of topological ground state degeneracy. Like a torus, an
infinitely long cylinder has a two-fold ground state degen-
eracy. A useful basis choice are the minimally entangled
states (MES),[27, 31, 32] which are labeled by the two
topological ‘sectors’ {|1〉 , |s〉}. These states have definite
topological flux 1/s threading the cylinder, and given the
state |1〉, the state |s〉 is obtained by nucleating a pair
of spinons and separating them out to infinity. If we in-
stead use a finite cylinder (Fig. 2) the pair eventually
encounters the boundaries; since we must leave one at
each edge, there is a energy splitting between |1〉 , |s〉,
but this is purely a boundary effect. The ratio of Ih
quantum numbers Q1/s(Ih) in these two states reveals

the fractionalization of the spinon: Qs(Ih)
Q1(Ih)

= (Ih)2s.

We now prove that (I2h)s = −1 for a CSL, so long as
SO(3) is preserved, using the flux-fusion test introduced
in Refs. 33 and 34. The spinon sector |s〉 can be obtained
from the vaccum state |1〉 by adiabatically threading Sz-
flux φ through the cylinder, i.e., by twisting the boundary
conditions. Due to the spin-Hall response, when φ = 2π,
∆Sz = ± 1

2 of spin has been transferred from one end of
the cylinder; this should be interpreted as the spinon sec-
tor |s〉, since the spinons brought to the edge bring with
them a magnetic moment. The Sz flux φ will be inverted
(φ→ −φ) by either inversion Ih or π spin rotation e iπS

x

,
but (with a proper choice of branch cut) it will remain
invariant under their combination e iπS

x

Ih. Therefore we
can track the eigenvalue of e iπS

x

Ih throughout the flux
insertion process, which must remain unchanged:

Qs(e
iπSxIh)

Q1(e iπSxIh)
= 1 =

[
(e iπS

x

Ih)2
]
s

(1)

As noticed in Ref. 34, to be compatible with the SO(3)
spin rotational symmetry, a plaquette-centered inversion
operation must commute with all spin rotations when
acting on the semionic spinons. Therefore we have[

(e iπS
x

Ih)2
]
s

= (e i 2πS
x

)s · (I2h)s = 1. (2)

Since each semion carries spin-1/2, (e i 2πS
x

)s = −1, prov-
ing that (I2h)s = −1.

We next turn to lines 3-6 in Tab. I. The fraction-
alization invariant (R2

x)s = ±1 encodes whether the
spinon carries such a ‘Kramers degeneracy’ under the
anti-unitary reflection Rx. To detect it, consider a YCn
cylinder on which Rx does not exchange the two edges.
As shown in Refs. [30, 35, 36], each ground state sector
can formally be regarded as a gapped 1D spin chain char-
acterized by 1D symmetry protected topological (SPT)
invariants.[37–39] The reflection G = ZRx2 is analogous
to ‘on-site time-reversal,’ which has a Z2 SPT invariant
‘{+1,−1}’. The trivial phase (+1) typically has gapped
edges, while the nontrivial SPT phase (−1) has degen-
erate edge states which are a ‘Kramers pair’ under Rx,
with R2

x = −1, analogous to a spin-1 Haldane chain. By

measuring the Rx-SPT invariant of |s〉 relative to |1〉, we
can check for Kramers degeneracy of the spinon.

We prove that (R2
x)s = −1 for any CSL whose spinons

carry half-integer spin. Since Sz flux φ adiabatically in-
serted through the cylinder is invariant under the com-
bined operation of spin rotation e iπS

x

and Rx,[40] the Z2

1D-SPT invariant associated with the anti-unitary sym-
metry e iπS

x

Rx must remain constant as |1〉 → |s〉, im-
plying [

(e iπS
x

Rx)2
]
s

= (e i 2πS
x

)s · (R2
x)s = 1. (3)

As a result we have R2
x = −1 for spin-1/2 semions.

We find that the remaining four invariants can be mea-
sured and theoretically predicted in a similar fashion,
which we leave to the SI. Consequently all the invariants
summarized in Tab. I are fixed.
Absolute quantum numbers. We have predicted the rel-

ative quantum numbers between topological sectors, but
under certain assumptions the absolute quantum num-
bers can be predicted as well. Consider a cylinder whose
ground state has no free moments, i.e., 〈Si〉 = 0 on all
sites. If the ground state remains moment-free when
adding a pair of spins to the lattice, one at each edge, the
introduced moments must be ‘screened’ by pair creation
of spin-1/2 excitations, i.e., spinons, which sit precisely
on the additional sites. Note that the spin-1/2 character
of the added sites was essential, otherwise a local excita-
tion could screen the new moment. As the entire cylinder
can be built up this way, the lattice behaves like a crystal
of semionic spinons.

We assume that the global quantum number Ih of the
geometry can be computed by taking this picture liter-
ally and applying Ih to each pair of spinons (i.e., sites).
This assumption is true within the parton construction,
[30, 41] but we contend it holds more generally. Un-
der Ih the spinon on each lattice site exchanges with its
inversion counterpart, and meanwhile each spinon also
rotates by π around itself. Due to the semionic statis-
tics of spinons, each counter-clockwise exchange will con-
tribute a phase e iπ/2 per inversion-related pair, while
counter-clockwise self-rotation by π leads to phase e iπ/4

per spinon. During this exchange, the trajectory of each
pair always encloses an even number of the other semions,
so there is no further statistical phase. Therefore the to-
tal phase obtained in this process is

Q(Ih) = e i
π
2
Ns
2 · e i π4Ns = (−1)

Ns
2 = (−1)# of Ih-pairs(4)

where Ns denotes the total number of lattice sites. This
prediction has a nontrivial dependence on the cylinder
type, since on XC8, the central column contains a single
pair of sites, while on YC8, it contains two.

When computing Is, two contributions differ. First,
two of the sites are left invariant, so they do not acquire
a phase. Second, the exchange of all the remaining pairs
encloses one of these stationary sites, acquiring an extra
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FIG. 3. The measured reflection quantum numbers
Q1/s(Ih/s) inferred from 16 CPS overlaps aσ/aIh/sσ. Results
were obtained using both finite and infinite DMRG on YC8
and XC8 cylinders.

mutual statistics (−1)Ns/2−1. Together,

Q(Is) = (−1)# of Is-pairs · (−1)# of Is-pairs ≡ +1. (5)

Numerically detecting symmetry fractionalization: the
CPS trick. If one had access to the wave function as a
dense vector—as in exact diagonalization—it would be
trivial to compute the needed global quantum numbers.
However, DMRG maps the cylinder to a 1D chain and
then compresses the wave function as a matrix product
state (MPS). A symmetry operation Û mapping sites to
sites can be written as a (long) product of nearest neigh-
bor swap operators. One can then, in principle, calculate
the symmetry overlap QU = 〈Ψ| Û |Ψ〉 by sequentially
applying the swaps to |Ψ〉 and doing a final MPS-MPS
overlap calculation. In practice, the intermediate states
produced when applying the swaps can have more en-
tanglement than the ground state itself, requiring bigger
bond dimensions, and this method is rather slow and un-
satisfactory.

A better approach involves measuring the overlap
of |Ψ〉 against several random classical product states
(‘CPS’). The wavefunction can be expanded in a com-
plete basis of CPS {σ}, |Ψ〉 =

∑
σ aσ |σ〉. If Û |Ψ〉 =

QU |Ψ〉, then aUσ = QUaσ, where Uσ is another CPS
trivially obtained from σ. Thus a single pair of CPS
amplitudes, aσ and aUσ, are enough to determine QU .
In practice, since |Ψ〉 is approximate, we obtain a dis-
tribution QU (σ) with mean 〈Ψ| Û |Ψ〉, and if |Ψ〉 is ac-
curate the distribution is sharply peaked at the correct
value. In order to ensure that aσ is non-negligible, the
configurations {σ} are efficiently sampled according to
the probability distribution |Ψ|2. [42] In contrast to a
calculation time of O(Nm3) for a DMRG sweep, where
N is the number of sites and m is the bond dimension,
sampling each CPS requires only O(Nm2) operations, so
thousands of samples can be collected in the same time as
a single DMRG sweep. In practice we find only a handful
are required.

Similarly, while in principle it is known how to measure
1D-SPT invariants in infinite DMRG [43], the existing al-

gorithm is cumbersome in the case where the reflection
permutes the DMRG snake, requiring swaps of cost m3.
We find a CPS trick can be used to measure the 1D-SPT
invariants of an infinite cylinder at cost m2, as detailed
in the SI. The CPS trick can be extended to other mea-
surements that require SG operations. For example, in
order to compute the topological S and T matrices [27]
given the degenerate ground states of a torus {|a〉}, one
must compute overlaps of the form 〈b| R̂θ |a〉 where Rθ is
a rotation of the torus. In the SI we show the result can
be trivially computed from a handful of CPS overlaps at
cost O(m2).

Results. We study the CSL phase at J1 = 1.0
, J2 = J3 = 0.5 using complex wavefunctions, so
that time-reversal symmetry is spontaneously broken.
We computed the inversion quantum numbers on XC8
and YC8 cylinders using both finite[44, 45] and infi-
nite DMRG.[46, 47] In finite DMRG, the topological
sector is switched from |1〉 to |s〉 by adding a site at
each end of the cylinder,[29] as illustrated in Fig. 2,
which attracts a spinon to each edge for energetic rea-
sons. In infinite DMRG, the two sectors appear as a
ground state degeneracy.[28, 48] Given the ground state,
the global Ih/Is quantum numbers were measured us-
ing the CPS trick, with a typical set of samples shown
in Fig. 3. There is little noise, indicating |Ψ〉 is very
nearly symmetric. In all cases, the relative quantum
numbers Qs/Q1 are in agreement with predictions. Fur-
thermore, recall that for YC8 geometries in the vac-
uum, we predicted (−1)# of Ih-pairs = 1, while for XC8
(−1)# of Ih-pairs = −1. This difference is reflected in the
observed absolute quantum numbers.

To measure (R2
x)s, we measured the Z2 1D-SPT in-

variant associated with Rx using iDMRG. The result,
(R2

x)s = −1, is apparent from the entanglement spectrum
of the |s〉 sector, shown in Fig. 1. The same Kramers de-
generacy predicted to occur at the edge will also appear
in the entanglement spectrum between the left and right
halves of the cylinder. As seen in Fig. 1, the spectrum
indeed has a two-fold degeneracy which was verified (see
SI) to transform as an Rx-Kramers doublet; the |1〉 sec-
tor, in contrast, does not. Both levels occur at the same
momentum around the cylinder, meaning T1 acts trivially
on the doublet, so the pair is also a Kramers doublet un-
der RxT1, implying (RxT1)2s = −1. Similar agreement
for Ry was found on XC8.

In conclusion, we have shown that the kagome CSL has
a unique but non-trivial pattern of SG symmetry frac-
tionalization, and detected this pattern in a microscopic
Heisenberg kagome model. In addition, we have eluci-
dated a general framework for probing SG symmetries
with DMRG which can be applied to other recently dis-
covered spin liquid phases. The nearest-neighbor Heisen-
berg kagome model, for example, may be a Z2 spin-liquid,
which has many possible symmetry fractionalization pat-
terns. However, for the cylinder circumferences currently
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in reach with DMRG, it has not been possible to identify
all the required degenerate ground states, so at present
we are unable to measure all the SG quantum num-
bers required to uniquely identify the fractionalization
pattern.[30]
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