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The transport properties of disordered systems are known to depend critically on dimensionality.
We study the diffusion coefficient of a quantum particle confined to a lattice on the surface of a
tube, where it scales between the 1D and 2D limits. It is found that the scaling relation is universal
and independent of the disorder and noise parameters, and the essential order parameter is the
ratio between the localization length in 2D and the circumference of the tube. Phenomenological
and quantitative expressions for transport properties as functions of disorder and noise are obtained
and applied to real systems: In the natural chlorosomes found in light-harvesting bacteria the
exciton transfer dynamics is predicted to be in the 2D limit, whereas a family of synthetic molecular
aggregates is found to be in the homogeneous limit and is independent of dimensionality.

Introduction.—Transport of energy or charge carriers
is of fundamental importance in terms of both scien-
tific interest and its technological relevance. The seminal
work of Anderson states that the presence of static dis-
order leads to a metal-to-insulator transition or even to-
tally prevents transport in lower dimensions[1, 2]. Upon
coupling to fluctuating environment, localized quasi-
particles can overcome energetic barriers, and the system
becomes conductive again[3]. While transport ceases to
exist in both the zero coupling limit (Anderson localiza-
tion) and the strong coupling limit (dynamical localiza-
tion), the intervention of environmental noise with inter-
mediate strength can maximize the conductivity[4–6].

Compared to classical hopping kinetics, where the gov-
erning rate equations are given in the coordinate ba-
sis, the motion of quantum particles on a disordered
and noisy lattice is more involved. In fact, in the weak
system-environment coupling limit, the dynamics of the
particle wavefunction can be cast into rate equations in
the eigenbasis. This implies that quantum enhancement
of the conductivity can be characterized by the aver-
age size of the wavefunctions, the localization length,
since this corresponds to the step size of each hopping
event[6, 7]. An immediate consequence arises if one con-
siders the different scaling behaviors of the localization
length in different dimensions. It is expected that, for
example, the quantum enhancement is much stronger in
2D with respect to that in 1D, given the same disorder
and noise strength.

In this Letter we investigate the diffusive dynamics
of a quantum particle on a tubular lattice in the ax-
ial direction, in which the transport properties scale be-
tween the 1D and the 2D limits. Recently, the optical
and dynamic properties of excitons in natural[8–10] and
synthetic[11–16] self-assembled tubular molecular aggre-
gates have drawn much attention. The combination of
their quasi-one-dimensional (wire-like) structure and the
attenuation of exciton localization due to their inherent
(locally) 2D nature, makes such tubular aggregates po-
tentially ideal for exciton transport in, for instance, pho-

tovoltaic devices[17]. A natural order parameter in this
regard is the radius of the tube, where the axial conduc-
tivity is found to be an increasing function of the radius
until a critical radius is reached and levels off as it ap-
proaches the 2D limit. We found that the scaling rela-
tion is universal, independent of the parameters chosen.
Moreover, the critical radius is shown to be directly pro-
portional to the localization length in the corresponding
2D system. A phenomenological expression is proposed
and shown to reproduce the radius dependence quantita-
tively, which is applied to several real systems in different
limiting parameter regimes and predict their respective
radius-(in)dependent diffusion constant.

Calculation of quantum diffusion.—The Haken-Strobl-
Reineker (HSR) model is employed to characterize the
system of interest coupled to a classical Markovian noisy
environment[18–20]. The dynamics of the system is de-
scribed by the stochastic Schrödinger equation

i
d

dt
|ψ〉 = Ĥs|ψ〉+

∑
n

Fn(t)V̂n|ψ〉, (1)

where V̂n = |n〉〈n|, Fn(t) are Gaussian stochastic pro-
cesses with zero mean (〈Fn(t)〉 = 0) and finite sec-
ond order autocorrelation 〈Fn(t)Fm(s)〉 = Γδnmδ(t− s),
with Γ the dephasing rate. The system Hamiltonian Ĥs

is characterized by a nearest-neighbor coupled square-
lattice with periodic boundary condition in one direction
(circumference) and isotropic coupling constant J . The
number of sites (R) along the tube’s circumference is re-
ferred to as the radius of the tube. The energy of site
n, εn, is taken to be an independent Gaussian random
variable with standard deviation σ.

The central physical observable in this Letter, the dif-
fusion coefficient D in the direction along unit vector ~u,
is given by the Green-Kubo expression,

D(u) =
1

Zs

∫ ∞
0

dtTr
[
e−βĤs ĵ(u, t)ĵ(u)

]
, (2)

where Zs is the system partition function. In the context
of the HSR model we will take β = 0 (infinite tempera-
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ture), so Zs = N , where N is the size of the system. The
time integration can be carried out analytically.

D(u) =
1

N

N∑
µ,ν=1

Γ

Γ2 + ω2
µν

|ĵµν(u)|2, (3)

where ĵµν(u) is the flux operator in the eigenbasis and
ωµν = ωµ − ων is the energy difference between states
µ and ν. See detailed derivations in the Supplemental
Material. It typically takes up to 100 sites in the axial
direction to converge the results for the range of disorder
strength covered in this Letter. The diffusion coefficient
obtained through Eq. (3) is quantitatively agreeing with
that from propagating Eq. (1) as was done in Ref. 6. For
consistency we present exclusively the data obtained with
Eq. (3) in this Letter. An efficient method of propagat-
ing Eq. (1) in the weak coupling regime (Γ/J � 1) is
also presented in the Supplemental Material. The same
methodology is applicable to the case where the system
is weakly coupled to a real quantum bath in the low tem-
perature regime, as elaborated in later sections.

The present model is exactly solvable in two limiting
cases. Firstly, the dynamics of homogeneous system (σ =
0) can be solved analytically and shows transient ballis-
tic behavior before transitions to diffusive motion[6, 19].
The dynamics is independent of dimensionality, and the
diffusion coefficient is given by[7]

Dhom = 2J2/Γ, (4)

which can be obtained by assuming Bloch wavefunctions
φµm = exp(iµm)/

√
N in Eq. (3). In fact, decoupling of

directions is valid as long as the wavefunctions of the
system can be factorized: Ψ(~n) = ψ(n1)ψ(n2) · · ·ψ(nM ).
One such example is given by stacks of homogeneous
rings with energy bias among different rings[21, 22]. In
the opposite extreme where either disorder (σ/J � 1)
or system-environment coupling (Γ/J � 1) is large, all
quantum coherence is destroyed. The particle behaves
classically and can be described by a hopping rate be-
tween connected sites[23–25]

Dhop =
2J2Γ

Γ2 + σ2
. (5)

Since the hopping events are independent along differ-
ent directions, independence on dimensionality is also ex-
pected. We conclude that prominent radius dependence
is expected only if the wavefunctions are non-separable
and with finite noise strength.

In the weak damping regime with finite disorder,
through a scaling argument, one can show that the dif-
fusion coefficient can be estimated by

Dcoh = Γξ2, (6)

where ξ is the localization length. This relation is very
useful since it connects the dynamical observable (diffu-
sion coefficient) with a static property of the system and a

single parameter characterizing the system-environment
coupling[4, 6], as will be exploited in the following sec-
tion. We provide the detailed derivation of Eqs. (3), (4),
and a heuristic derivation of Eq. (6) in the Supplemental
Material.

Numerical results.—We start by discussing the diffu-
sion constants in 1D and 2D. It has been shown that
the localization length scales linearly with the mean free
path in 1D and exponentially in 2D[26]. A common and
useful measure of the localization length is given by the
inverse participation ratio (IPR), defined for each of the
eigenstates as IPRµ = 1/

∑
m |φµm|4. Due to the high

temperature characteristic of the HSR model we average
over all eigenstates and fit the IPR of disordered 1D and
2D square lattices according to

ξ1D = IPR1D ∼ a1l, (7)

(ξ2D)2 = IPR2D ∼ a2l exp (b2l) , (8)

where l = J2

σ2 is the mean free path, and length scale
is measured in units of the lattice constant. The re-
sults are shown in Fig. 1(a). These expressions provide
a simple way of estimating the diffusion coefficient in
the weak damping regime given the disorder strength σ,
where Eq. (6) applies. Note that in 1D the IPR is di-
rectly interpreted as the localization length, while in 2D
its square root is. This is because it is the diffusion along
one particular direction that concerns us.

Thouless and Kirkpatrick proposed an interpolating
formula for the general case which was proven to be valid
for most of the parameter ranges of interest[3, 6]:

Dinterp =

[(
2J2

Γ + σ/2

)−1/2
+ (Γξ2)−1/2

]−2
. (9)

In Fig. 1(b) this interpolation result is shown as a func-
tion of Γ and compared to the numerically exact results
obtained from Eq. (3), averaging over 100 realizations of
disorder. At a given disorder strength σ one expects an
optimal dephasing rate maximizing transport[6, 27]. The
interpolation formula not only describes the two limits
correctly, but also captures the maxima almost quantita-
tively, showing the transition between the two transport
mechanisms. Note that this expression also reproduces
the convergence of diffusion constants in different dimen-
sions in the homogeneous limit, i.e., Eq. (4).

We next look at the radius dependence of the diffusion
constant in a tube. Since the diffusive motion in the
large dephasing limit is independent of dimensionality
and the Γ dependence is well described by Eq. (9), we
will focus on the Redfield regime (Γ/J � 1) while the
effect of finite Γ is analyzed in the Supplemental Material.
This dependence should be bounded from below by the
results of 1D diffusion and from above by 2D diffusion,
as seen in Fig. 1(c). The diffusion constant increases as
the tube radius R increases until the trend is attenuated
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FIG. 1. (Color online) (a) IPR dependence on the disorder
strength in 1D and 2D. The parameters fitted in Eqs. (7)
and (8) are a1 = 6.2 and (a2, b2) = (67, 6.7). The numerical
data are shown in symbols. We use 4900 sites for 1D sys-
tem (black circles), and 2D systems with 70×70 (blue circles)
and 90×90 (blue asterisks) square lattices (b) Comparison be-
tween the results of Eq. (3) and those of Eq. (9). The lower
(black) circles and solid line refer to 1D systems and the up-
per (blue) circles and line represent 2D systems. In both cases
we set σ/J = 1. (c) Radius dependence of D with σ/J = 1
and Γ/J = 10−4. The solid line is the fitting according to
Eq. (10), with the corresponding fitted parameters Rc and
D2D indicated.

at the inflection point R = Rc, denoted as the critical
radius. This radius dependence is universal across the
entirety of the parameter space we scanned, as shown
in Fig. 2, where the data is rescaled according to the
phenomenological expression

D(R) = D1D + (D2D −D1D)S

(
R− 1

Rc

)
, (10)

where S(0) = 0, S(∞) = 1, and dS/dx is everywhere pos-
itive for x > 0. Here we chose S(x) = 2 arctan(x)/π.[28]
To demonstrate the generality of this observation, we also
present the universality found for systems with realistic
quantum bath treated under the secular Redfield approx-
imation (right inset, Fig. 2). With the details described
in the Supplemental Material, this method models accu-
rately the low temperature thermal activated transport
regime that complements the HSR model[7, 29, 30], and
has been shown to explain the temperature dependent ex-
citon properties of molecular aggregates relevant to our
discussion in the next section[31, 32].

The universality can be explained by the following in-
terpretation. One expects a strong radius dependence of
the diffusion coefficient only if the particle wavefunction
fully delocalizes around the tube. This is no longer valid
as the radius becomes larger than its critical value, where

FIG. 2. (Color online) Relative diffusion coefficient D̃ =
(D(R) −D1D)/(D2D −D1D) as a function of rescaled radius

R̃ = (R−1)/Rc. The solid line is the fitting function S(x) and

the dashed line indicates R̃ = 1. Inset (left) shows data from
Eq. (3) before rescaling: From top (σ/J = 2, blue) to bottom
(σ/J = 5, red) with 0.5 increment and interpolating color
gradient. Inset (right) shows data from the quantum bath
calculations with varying temperatures: From top (T/J = 7,
red) to bottom (T/J = 0.7, blue) with 0.7 decrement.

FIG. 3. Schematic illustration of the origin of universal radius
scaling of transport rate in tubes.

the wavefunction occupies only partially the space in the
circumferential direction. Essentially, this picture iden-
tifies the critical radius with the localization length in
the corresponding 2D system, as is illustrated in Fig. 3.
In determining the radius dependence, one compares two
length scales of the system: the circumference of the tube
and the inherent localization length along the circumfer-
ence. This makes our theory predictive on the axial dif-
fusion coefficients of general tubular systems, given the
knowledge of the localization length obtained from ex-
periments or ab initio calculations, as demonstrated in
the next section. We note that this picture can also be
applied to understanding the optical selection rules for
the dichroism spectra of tubular systems[33].

Estimates for real systems.—There are numerous ex-
amples of exciton transport in tubular aggregates consist-
ing of organic chromophores. Amongst the best known
examples found in nature are the chlorosomes in green
sulfur bacteria[8], which serve as the antenna of the light-
harvesting apparatus. Diffusive transport of excitons in
chlorosomes has been identified[34, 35]. The above scal-
ing argument predicts the exciton diffusion on chloro-
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some tubes to be in the 2D limit, because the critical
radius Rc is much smaller than the typical radius found
in the organism, see Table I[36]. This implies the chloro-
somes fully exploit the enhancement and robustness of
quantum transport in 2D compared to 1D, while taking
the advantage of broad absorption spectrum induced by
strong homogeneous (Γ) and inhomogeneous (σ) broad-
ening mechanisms[37].

Families of synthetic self-assembled tubular molecu-
lar aggregates exist as well, mimicking chlorosomes with
axial length up to micron scale[11, 38, 39]. One such
aggregate, composed of the dye molecule C8S3, has
been recently characterized[14, 40]. Due to the reduced
static disorder and strong exciton coupling strength (J ≈
8σ, see Table I), the system is in the homogeneous
limit and the diffusion coefficient becomes independent
of dimensionality or radius. This conclusion is sup-
ported by the well-defined absorption selection rules aris-
ing from the wavefunctions fully delocalized around the
circumferences[14, 38]. The large localization length in
such systems can be utilized in transporting the excitons
efficiently along the tubes[17, 40].

There are other instances where radius (in)dependence
of transport in tubular systems is seen. It has been shown
that the exciton mobility in semiconducting single-walled
carbon nanotubes increases linearly with radius[41]. This
implies that the reduced disorder in clean carbon nan-
otube samples gives rise to large localization length[42],
so the system is in the R � Rc limit that shows lin-
ear radius dependence. In addition, molecular tubes
based on tobacco mosaic virus protein monomers de-
signed to mimic natural light-harvesting arrays were
synthesized[43]. It is found that the exciton dynam-
ics can be described appropriately by classical hopping
kinetics[44, 45], thus the independence of dimensionality
is predicted (see Table I). Lastly, quantum diffusion of
excitons in aggregated phycocyanin thin films has been
experimentally characterized recently[46], where the de-
localization of excitons explains the enhancement of the
diffusion length compared to the estimate of classical
hopping theory. While this artificial system serves as
an example of quantum diffusion in 2D, the naturally oc-
curring form of phycocyanin in most cyanobacteria self-
assembles into a finite 1D wire[47]. It is our ongoing
effort to analyze this interesting system in this regard.

Both the HSR model and the weak-coupling secular
Redfield method applied to isotropic nearest-neighbor
coupled square lattices are an over-simplification of the
real systems[36]. Richer physical content can be ex-
pected when considering more realistic aspects. For
examples, it has been shown that environmental mem-
ory effects can enhance diffusive transport[24, 35]. The
anisotropy from nontrivial molecular arrangement could,
for example, render a helical character to the exciton
wavefunction[33, 48–50]. Moreover, the statistics of
disorder[51] and long-range interactions[52] are both crit-

J σ Γ D1D D2D Rc R

Chlorosome 400 1000 350 26 35 6 100

C8S3 tube 2000 250 300 2800 2900 - 30/60

TMV tube 50 3000 400 0.6 0.6 1 17

TABLE I. Parameters and axial exciton diffusion
estimated[36] for three exemplary real tubular systems
at room temperature. J , σ, Γ are given in cm−1, diffusion
coefficients are in nm2/ps, and R (Rc) is unitless representing
the (critical) number of molecules in the circumference.
The parameters for J , σ, Γ, and R from top to bottom are
deduced from Ref. 35, 14 and 53, and 45, respectively. The
other quantities are calculated using Eqs. (7), (8), and (9).
We take Rc = ξ2D since the ratio between ξ2D from Eq. (8)
and the fitted Rc from Eq. (10) is close to unity in our
calculations.

ical in determining the localization length. We expect the
R-dependence to be more involved in these and other
possible generalizations, since the functional dependence
of the localization length on the additional model pa-
rameters varies. However, once given these parameters
and thus the localization length, the transition from 1D
to 2D can be compactly characterized by the ratio be-
tween radius and the localization length. Consequently,
we believe the universal scaling relation investigated in
this Letter can serve as a generic guidance. Finally the
theoretical framework developed here also applies to, for
example, the in-plane exciton mobility as a function of
the thickness of thin films, which is predicted to scale
between the 2D and the 3D limits.

Conclusion.—We have developed a theoretical frame-
work and efficient numerical procedure to model exciton
dynamics in tubular molecular aggregates in the pres-
ence of environmental noise and disorder based on the
HSR model and the secular Redfield model. The central
observation is that the diffusion coefficient along the ax-
ial direction increases as a function of the tube radius.
This dependence is found to be universal across the full
parameter range of interest, and can be succinctly charac-
terized by the ratio between the tube circumference and
the localization length of the corresponding 2D system.
For the chlorosome tubes found in green sulfur bacteria,
the exciton transport is found to be in the 2D limit. On
the other hand, in a synthetic system with self-assembled
cyanine dye molecules mimicking chlorosomes, the exci-
tons are in the homogeneous limit where independence of
dimensionality is predicted. Our findings are useful when
exploiting the structure-property relation in designing ro-
bust and efficient artificial light-harvesting devices.
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