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Observation of an Alfvén wave parametric instability in a laboratory plasma

S. Dorfman and T. A. Carter
University of California Los Angeles, Los Angeles, California 90095, USA

A shear Alfvén wave parametric instability is observed for the first time in the laboratory. When
a single finite w/Q; kinetic Alfvén wave (KAW) is launched in the Large Plasma Device above a
threshold amplitude, three daughter modes are produced. These daughter modes have frequencies
and parallel wave numbers that are consistent with co-propagating KAW sidebands and a low
frequency nonresonant mode. The observed process is parametric in nature, with the frequency of
the daughter modes varying as a function of pump wave amplitude. The daughter modes are spatially
localized on a gradient of the pump wave magnetic field amplitude in the plane perpendicular to
the background field, suggesting that perpendicular nonlinear forces (and therefore k, of the pump
wave) play an important role in the instability process. Despite this, modulational instability theory
with k; = 0 has several features in common with the observed nonresonant mode and Alfvén wave

sidebands.

PACS numbers: 52.35.Mw, 52.35.Bj

Alfvén waves, a fundamental mode of magnetized plas-
mas, are ubiquitous in space, astrophysical, and labora-
tory plasmas. While the linear behavior of these waves
has been extensively studied [1-5], nonlinear effects are
important in many real systems, including the solar wind
and solar corona. Theoretical predictions show that
these Alfvén waves may be unstable to various paramet-
ric instabilities (e.g. [6-8]) even at very low amplitudes
(0B/B < 1073). Parametric instabilities could con-
tribute to coronal heating [9], the observed spectrum and
cross-helicity of solar wind turbulence [10-12], or damp-
ing of fast magnetosonic waves in fusion plasmas [13, 14].

An abundance of theoretical work [6, 7, 15-19] has
found three types of parametric instabilities for a k; =0
Alfvén wave: decay, modulational, and beat. The de-
cay instability is the most widely known and involves the
decay of a forward propagating Alfvén wave into a back-
ward propagating Alfvén wave and a forward propagating
sound wave. By contrast, the modulational instability
results in forward propagating upper and lower Alfvénic
sidebands as well as well as a nonresonant acoustic mode
at the sideband separation frequency. To allow the for-
ward propagating waves to interact, the pump wave must
be dispersive — therefore the modulational instability at
k) = 0 requires finite w/€; through inclusion of Hall ef-
fects [7]. Ponderomotive coupling between the pump and
sideband Alfvén modes self-consistently drives the non-
resonant density perturbation parallel to the background
magnetic field. In this context, “nonresonant” means
that the mode does not satisfy a dispersion relation in
the absence of the instability drive; this is also called a
quasimode in the fusion community [20, 21].

Both shear Alfvén wave decay and modulational insta-
bilities have been produced in numerical simulations [11,
22-25], but observational evidence is limited. Observa-
tions in the ion foreshock region upstream of the bow
shock in the Earth’s magnetosphere have found cases
where a decay instability is possible, but results are not
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FIG. 1. Experimental setup in LAPD. Top: An Alfvén wave
antenna on the right end of the device launches the pump
wave. Magnetic and Langmuir probes used to diagnose the
interaction are shown. Bottom: Spatial pattern of the pump
wave in the xy plane mesured by a magnetic probe at z =
2.6 m for the strap antenna (left, Bo = 1135 G) and RMF
antenna (right, Bo = 993 G).

conclusive due to limited available data [26, 27].

In this letter, the first laboratory observations of a
shear Alfvén wave parametric instability are presented.
A single finite w/€;, finite k; Alfvén wave is launched,
and three daughter waves are observed when the ampli-
tude of the pump is above a threshold: two sideband
Alfvén waves co-propagating with the pump and a low
frequency nonresonant mode. Frequency and parallel
wave number matching relations are satisfied. Although
these features of the observed instability are consistent
with the £ = 0 modulational instability theory, the the-
oretical growth rate is too small to explain observations.



The spatial pattern of the daughter modes suggests a per-
pendicular (to the background magnetic field) nonlinear
drive.

Experiments are conducted using the Large Plasma
Device (LAPD) at UCLA, a cylindrical vessel capa-
ble of producing a 16.5 m long, quiescent, magnetized
plasma column for wave studies. The BaO cathode dis-
charge lasts for ~ 10 ms, including a several millisecond-
long current flattop. Typical plasma parameters for the
present study are n, ~ 102 cm™3, T, ~ 5 eV, and
By ~ 1000 G (8 ~ 1072 — 10~*) with a fill gas of he-
lium. Extensive prior work has focused on the properties
of linear Alfvén waves [5, 28-30]. Studies of the nonlinear
properties of Alfvén waves have also been performed on
LAPD; in these experiments, two launched Alfvén waves
nonlinearly interact to drive: a nonresonant mode [31], a
drift wave [32], an acoustic mode [33, 34], or an Alfvén
wave [35].

For the present set of experiments, a single antenna is
placed at the far end of the LAPD, as shown in the top
panel of Fig. 1. This is either the 96 cm long strap an-
tenna [36] shown in the diagram or the rotating magnetic
field (RMF) antenna described in Gigliotti et al. [37].
The pump wave is launched at wg ~ 0.67€);, producing
the pattern in the plane perpendicular to By shown for
each antenna in the bottom panel. The strap antenna
launches a linearly polarized m = 0 Alfvén wave cone
(kiLops = 0.11) in which oscillating magnetic field vectors
(white arrows) circle the field-aligned wave current. By
contrast, the RMF antenna is set up to produce two field-
aligned current channels (k) ops = 0.21) rotating around
By in an m = 1 pattern [37]. The rotation direction and
hence wave polarization may be controlled by varying the
antenna phasing. To ensure the launched wave remains
nearly monochromatic, the antenna current is digitized
(not shown) and found to contain no significant sideband
component.

In the plasma column in front of the antenna, mag-
netic and Langmuir probes detect the signatures of the
pump and daughter modes. Each probe is mounted on
an automated positioning system that may be used to
construct a 2-D profile in the z-y plane averaged across
multiple discharges.

When the pump wave amplitude exceeds a threshold
value, additional peaks are observed in the frequency
spectrum, as shown in Fig. 2. Panel (A) of the figure
shows the appearance of three modes: a low frequency
mode (M1), a lower sideband mode (M-), and an upper
sideband mode (M+). The frequency matching relations
wi Fwi = wy hold. However, M1 is not purely a density
perturbation as predicted by the k; = 0 modulational
instability theory; as seen in Fig. 2, the mode has signif-
icant magnetic character.

A clear parametric dependence of the mode frequencies
on pump amplitude is shown in Panel (B) of Fig. 2. As
the pump amplitude § By, /By increases above threshold,
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FIG. 2. Observed kinetic Alfvén wave (KAW) parametric in-
stability showing threshold behavior and parametric depen-
dence. RMF antenna, RHCP mode, By = 993 G. (A) Fre-
quency spectrum from a magnetic probe at = 0, y = —6 cm,
z = 2.6 m for three pump mode amplitudes. When the pump
amplitude is above threshold for instability, three daughter
modes are seen. (B) Parametric dependence of the daughter
mode frequency as a function of pump amplitude §Bo . /Bo.
The pump amplitude is 0 on the logio color scale. White ver-
tical dashed lines represent values of pump amplitude from

(A).

the frequencies of M1 and M+ increase; there is a corre-
sponding decrease in the frequency of M- such that fre-
quency matching relations are satisfied at all wave pow-
ers.

To determine the character of the three observed
daughter modes, the parallel wavenumbers are measured
using a set of three axially-separated magnetic probes
placed 0.639 m apart, allowing resolution of wave num-
bers up to 4.9/m. As shown in Fig. 3, this measure-
ment reveals positive values of & for all modes, indi-
cating that all three daughter modes are co-propagating
with the pump. Parallel wavenumber matching is satis-
fied, k+ F k|1 = kjjo- Based on the measured dispersion
relation, the pump, M-, and M+ are identified as ki-
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FIG. 3. Parallel wavenumber measurement showing daughter
modes co-propagating with the pump. The pump, M-, and
M+ are identified as KAWSs while M1 is a nonresonant mode.
Strap antenna, By = 1140 G, 6Bo. /Bo = 1.9 x 1072, Mag-
netic probes at z = 5.11 m, 5.75 m, and 6.39 m. The fluid
dispersion relation for a KAW with the pump kiops = 0.11
and a line with slope w/k; = 0.29V4 are plotted for compar-
ison.

netic Alfvén waves (KAWs) while M1 is a nonresonant
mode. Note that M1 falls above the KAW dispersion

curve w = kHVA\/l + (k1ps)® — (w/9Qy)? for all possible
values of k. However, the measured k; is too small
for M1 to be an acoustic mode (for these parameters,
Cs = 0.012V},). This production of a nonresonant mode
is consistent with the modulational instability.

Measurements in the plane perpendicular to the back-
ground field reveal that perpendicular nonlinear forces
likely play a role in generating the observed daughter
waves. This is shown in Fig. 4 which displays the pat-
tern of a representative daughter mode M- in the strap
antenna case; the plot is derived from a magnetic probe
scanned spatially over many shots. By comparing this
figure to the strap pump mode pattern in Fig. 1, it can
been seen that the amplitude peak of M- occurs near
the center of the current channel on a gradient of the
pump mode magnetic field. By contrast, the parallel
ponderomotive force associated with the modulational in-
stability will produce an amplitude peak in the daughter
modes at the location where the pump wave magnetic
field peaks [33, 38]. This difference suggests a perpendic-
ular nonlinearity in which perpendicular gradients of the
pump mode amplitude (i.e. k) play a key role in the
nonlinear terms.

The pump mode polarization also influences the ob-
served instability. This is investigated by changing the
RMF antenna phasing to produce one of the two po-
larization patterns shown in the inset panel of Fig. 5.
Polarization is quantified at each spatial point by mea-
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FIG. 4. Spatial profile of M- for the strap antenna suggesting
the nonlinearlity is perpendicular in nature. A cut of §B; is
shown on the right. Strap antenna pump from Fig.1, By =
1135 G. Color represents fluctuating magnetic field amplitude
6B, ; white arrows show realtive magnitude and direction.
The peak in M- amplitude occurs on a gradient of the pump
mode magnetic field near the current channel center.
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FIG. 5. Dependence of the observed frequecy spectrum on
the polarization of the RMF antenna. Mangetic probe z = 0,
y = —6 cm, z = 2.6 m. Inset: Polarization of the RMF pump
mode from Fig. 1 along a cut at x = 0. By =993 G.

suring the ratio of the minor to major radius in the ellipse
traced by the rotating magnetic field vector. This quan-
tity is signed negative for left-hand rotation and positive
for right-hand rotation. As shown in Fig. 5, left-hand
(LHCP) and right-hand (RHCP) pump modes contain
opposite polarization mixes that sum to linear polariza-
tion. Each mix produces a different frequency spectra in
the vicinity of the current channel; the sideband separa-
tion frequency produced by LHCP mode is less than half
that produced by RHCP mode. As in the linearly polar-



ized strap antenna case, the daughter mode amplitudes
peak near the current channel center for RHCP pump
mode. The spatial profile and non-linear physics may be
different in the LHCP case and is still under investiga-
tion; LHCP mode also leads to a broadening of the pump
mode profile and a corresponding broad spectrum at low
frequencies. The existence of a polarization dependence
is consistent with the theoretical literature on parametric
instabilities. However, most theoretical work (e.g. [6, 7])
considers uniformly polarized plane waves, making direct
comparisons difficult.

Despite important physical differences with the present
work, modulational instability theory with k; = 0 still
describes some features of the observed process well.
Fig. 6, Panel (A) shows the roots of the dispersion re-
lation derived by Wong and Goldstein [6], Hollweg [7],
solved for LAPD parameters. This two-fluid model out-
puts the dispersion relation of M1 given a finite ampli-
tude pump wave propagating parallel to the background
field. Orange curves for unstable modes reveal the usual
decay, beat, and modulational instabilities driven by the
parallel ponderomotive force. Because the modulational
instability involves only forward propogating modes, it is
most consistent with the experimental observations. An
arrow on the figure indicates that the peak growth rate of
the modulational instability occurs for daughter nonres-
onant modes with w/kj = 0.29V4. Comparing this value
to the measured dispersion of M1 in Fig. 3, the line falls
just within the upper errorbar. Therefore, the fact that
M1 is not a normal mode of the system is well-predicted
by modulational instability theory with k; = 0.

The theory also predicts the increase in mode fre-
quency with pump amplitude seen in Fig. 2. This is
shown in Panel (B) of Fig. 6 which plots the frequency
of M1 for both the experimental case in Fig. 2 (blue cir-
cles) and the k; = 0 theoretical prediction [6, 7] (red
stars). Both theory and experiment follow an upward
trend. However, the theoretical frequencies are an or-
der of magnitude too low, and the corresponding growth
times are longer than the plasma discharge; clearly, the
parallel poderomotive force is too weak to explain the
experimental observations. Furthermore, changing the
k. spectrum of the pump wave by switching to a differ-
ent antenna (yellow squares) while keeping other param-
eters similar results in an increase in the observed M1
frequency. These observations imply that perpendicular
structure plays a key role in the observed instability.

Further theoretical development is necessary to fully
explain the observed daughter modes. Wong and Gold-
stein [6], Hollweg [7] predict that the growth rate of the
decay instability should be three orders of magnitude
larger than that of the modulational instability for the
LAPD parameters under investigation. Yet parametric
decay to sound waves is not observed. Possible reasons
include (1) the growth rates are modified when finite &
is considered and (2) for the larger values of k| character-
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FIG. 6. Comparison between LAPD data and Wong and

Goldstein [6], Hollweg [7] k1 = O dispersion relation. (A)
Solutions to the dispersion relation of Wong and Goldstein
[6], Hollweg [7] for experimental parameters of Fig. 3. La-
beled: s: sound mode, -b: backward propagating lower
Alfvénic sideband, -f: foward propagating lower Alfvénic side-
band, +f: foward propagating upper Alfvénic sideband. Black
curves represent stable modes; orange curves repesenting un-
stable modes are labeled with the appropiate instability. (B)
Mode frequency of the modulational instability as a function
of pump amplitude for experimental parameters in Fig. 2
(blue circles), theoretical predictions (red stars), and strap
antenna results with similar parmeters (yellow squares).

istic of the decay instability ion-neutral collisions present
in the experiment significantly reduce the growth rate.

Concerning the effect of finite k,, very limited theo-
retical and computational work is available. Numerical
simulations by Del Zanna [39][40], Matteini et al. [23]
show a reduction in the growth rate of the decay insta-
bility for oblique pump waves, but do not consider the
modulational instability. Work by Vinas and Goldstein
[41, 42] extend the theory to allow the daughter modes



to have finite k; while retaining ko = 0 for the pump.
This allows for new classes of instabilities at oblique an-
gles. In particular, Vinas and Goldstein [42] found a
magneto-acoustic instability with a very narrow band of
unstable wavenumbers which is favored at low 8 and high
wave dispersion (i.e. high w/€;). The oblique nature of
the daughter modes may also explain the Alfvénic char-
acter of the observed nonresonant mode M1. New insight
on the nature of the nonlinear terms may also come from
extending theoretical work by Brugman [43] which exam-
ines co-propagating waves, but only with aligned polar-
izations. The applicability of these results to the present
paper is currently under investigation.

In summary, the first laboratory observations of a shear
Alfvén wave parametric instability are presented. A sin-
gle finite w/Y;, finite k; Alfvén wave is launched above a
threshold amplitude, resulting in three daughter modes:
two forward propagating Alfvén wave sidebands and a
forward propagating nonresonant mode. Frequency and
parallel wavenumber matching relations are satisfied. Al-
though these features are consistent with the k; = 0
modulational instability theory, the parallel ponderomo-
tive force that drives this process cannot explain the
growth or perpendicular spatial profile of the observed
daughter modes. Future theoretical and computational
work will focus on exploring the role of k£, in the insta-
bility. Experimental data analysis is ongoing to explore
variation with plasma parameters.

The observations reported here open a significant
new avenue of research to complement extensive the-
ory [6, 7, 15-19] and simulation [11, 22-25] work on this
subject. Features of the observed instability may pro-
vide guidance to future space observation aimed at as-
sessing the role of Alfvén wave parametric instabilities in
different regions of the heliosphere; for example, in the
ion foreshock region of planetary magnetospheres where
large amplitude Alfvén waves are generated by ion beams
[26, 27, 44]. Because the present results are at low 3,
they may be of particular interest to the upcoming Solar
Probe Plus mission aimed at determining what physical
processes are most important in the source region of the
solar wind.
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