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We introduce a deterministic chaotic system—the Szilard Map—that encapsulates the measure-
ment, control, and erasure protocol by which Maxwellian Demons extract work from a heat reservoir.
Implementing the Demon’s control function in a dynamical embodiment, our construction sym-
metrizes Demon and thermodynamic system, allowing one to explore their functionality and recover
the fundamental trade-off between the thermodynamic costs of dissipation due to measurement and
due to erasure. The map’s degree of chaos—captured by the Kolmogorov-Sinai entropy—is the rate
of energy extraction from the heat bath. Moreover, an engine’s statistical complexity quantifies the
minimum necessary system memory for it to function. In this way, dynamical instability in the
control protocol plays an essential and constructive role in intelligent thermodynamic systems.
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Synthetic nanoscale machines [1–4], like their macro-

molecular biological counterparts [5–7], perform tasks

that involve the simultaneous manipulation of energy,

information, and matter. In this they are informa-

tion engines—systems with two inextricably intertwined

characters. The first aspect, call it “physical”, is the

one in which the system—seen embedded in a material

substrate—is driven by, manipulates, stores, and dissi-

pates energy. The second aspect, call it “informational”,

is the one in which the system—seen in terms of its spa-

tial and temporal organization—generates, stores, loses,

and transforms information. Information engines oper-

ate by synergistically balancing both aspects to support

a given functionality, such as extracting work from a heat

reservoir.

This is remarkable behavior. Though we can some-

times identify it—in a motor protein hauling nutrients

across a cell’s microtubule highways [5], in how a quan-

tum dot transistor modulates current under the influence

of an evanescent wave function [8, 9]—it is not well un-

derstood. Understanding calls on a thermodynamics of

nanoscale systems that operate far out of equilibrium and

on a physics of information that quantitatively identifies

organization and function, neither of which has been fully

articulated. However, recent theoretical and experimen-

tal breakthroughs [6, 7, 10–12] hint that we may be close

to a synthesis which not only provides understanding but
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predicts quantitative, measurable functionalities.

We define an information engine as a system that per-

forms information processing as it undergoes controlled

thermodynamic transformations. We show that informa-

tion engines are chaotic dynamical systems in the par-

ticular sense that energy extraction from the heat bath

requires a spreading of ensemble trajectories and this

leads to a positive Lyapunov characteristic exponent. (In

a rather different setting, that demon-like behavior re-

quires an overall chaotic dynamics was broached previ-

ously by Ref. [13].) Building this bridge to dynamical

systems theory allows us to employ its powerful tools to

analyze an engine’s complex, nonlinear behavior. This in-

cludes not only monitoring instability via the Lyapunov

exponents, but a thorough informational and structural

analysis that leads to a measure of thermodynamic sys-

tem intelligence.

By way of concretely illustrating the theory, we intro-

duce an explicit implementation of Szilard’s Engine [14]

as an iterated composite map of the unit square that is

a deterministic, but chaotic dynamical system. The re-

sult is a particularly simple and constructive view of the

energetics and computation embedded in controlled non-

linear thermodynamical systems. That simplicity, how-

ever, gives a solid base for designing and analyzing real

information engines. We end giving a concise statement

of the general theory and applications.

Background The Szilard Engine is an ideal

Maxwellian Demon for examining the role of infor-

mation processing in the Second Law [14]. The engine

consists of three components: a controller (the Demon),
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a thermodynamic system (a particle in a box), and a

heat bath that keeps both thermalized to a temperature

T . It operates by a simple mechanism of a repeating

three-step cycle of measurement, control, and erasure.

During measurement, a barrier is inserted midway in the

box, constraining the particle either to box’s left or right

half, and the Demon memory changes to reflect on which

side the particle is. In the thermodynamic control step,

the Demon uses that knowledge to allow the particle

to push the barrier, extracting
∫
P dV = kBT ln 2

work from the thermal bath. (Supplementary Materials

review this and related thermodynamic calculations.) In

the erasure step, the Demon resets its finite memory to a

default state, so that it can perform measurement again.

The periodic protocol cycle of measurement, control,

and erasure repeats endlessly and deterministically.

The net result of the cyclic protocol is the extraction of

work from the bath during control balanced by heat dis-

sipated due to changes in the Demon’s memory during

measurement and erasure. Note that extracting kBT ln 2

work from a thermal reservoir was a paradox until the

last century, when it was realized that the information

processing steps of measurement and erasure have a com-

pensating energy cost [15–17].

Rather than seeing the Demon and box as separate,

though, we view it—an information engine—as the direct

product of thermodynamic system and Demon memory

[18]. Though we follow Szilard closely, he did not specify

the Demon’s physical embodiment. Critically, we choose

the Demon’s memory to be another spatial dimension

of a particle in a box. Thus, we see the joint system

as a single particle in a two-dimensional box, where one

axis represents the thermodynamic System Under Study

(SUS)—the original particle in a box—and the other axis

represents the Demon memory. We now describe a de-

terministic protocol that implements the Szilard Engine,

evolving a particle ensemble over the joint state space.

A Dynamical Engine The Szilard Engine’s

measurement-control-erasure barrier-sliding protocol is

equivalent to a discrete-time two-dimensional map from

unit square I2 = [0, 1] × [0, 1] to itself. The engine has

two kinds of mesoscopic states—states of the particle’s

location
{
L ∼ x ∈ (0, δ], R ∼ x ∈ (δ, 1)

}
and states of the

Demon’s knowledge
{
A ∼ y ∈ (0, γ], B ∼ y ∈ (γ, 1)

}
of

the location—that partition the joint states (x, y) ∈ I2.

The protocol cycle translates into a composite map

TSzilard = TE ◦ TC ◦ TM of I2; one map for each engine

step; see Fig. 1(a). As they operate, they take the joint

state space from one stage to another around the cycle:

Measurement: To correlate Demon memory with par-

ticle location TM takes the A⊗L and the B⊗L mesostates

to themselves, the A⊗R mesostate to B⊗R, and B⊗R

to A⊗R:

TM(x, y) =


(x, y) x < δ, y < γ or x < δ, y ≥ γ ,(
x, γ + y 1−γ

γ

)
x ≥ δ, y ≤ γ ,(

x, γ y−γ1−γ

)
x ≥ δ, y > γ .

Thermodynamic control: To extract energy from the

bath TC expands both the A and B Demon memory

mesostates over the SUS’s whole interval:

TC(x, y) =

{
(xδ , y) x < δ ,(
x−δ
1−δ , y

)
x ≥ δ .

Erasure: TE maps both the A and B Demon mem-

ory mesostates back to a selected Demon memory reset

mesostate. If that reset state is A, then the mapping is:

T AE (x, y) =

{
(x, yδ) y < γ ,(
x, δγ + y−γ

1−γ γ(1− δ)
)

y ≥ γ .

The resulting form of the whole measure, control, and

erase cycle on the unit square is

T̂Szilard(x, y) =



(xδ , δy) x < δ, y < γ ,(
x−δ
1−δ , δγ + y(1− δ)

)
x ≥ δ, y < γ ,(

x
δ , δγ + y−γ

1−γ γ(1− δ)
)

x < δ, y ≥ γ ,(
x−δ
1−δ ,

y−γ
1−γ γδ

)
x ≥ δ, y ≥ γ .

This explicit construction establishes that the tempo-

ral behavior of Szilard’s Engine can be modeled by a

deterministic dynamical system whose component maps

are thermodynamic transformations—a piecewise ther-

modynamical system. The mapping TSzilard means we can

avail ourselves of the analytical tools of dynamical sys-

tems theory [19, 20] to analyze the Szilard Engine mech-

anisms. This perforce suggests a number of more refined

and quantitative questions about the engine dynamics

ranging from the structural role of the stable and unsta-

ble submanifolds in supporting information and thermo-

dynamic processing to the existence of asymptotic invari-

ant distributions and measures of information generation,

storage, and intelligence.

As shown in Fig. 1(leftmost), only the lower region y ≤
γ is occupied in the iteration of the Szilard Map. This

is the Demon’s default state, from which it starts every

cycle. Over this region, the Szilard Map is a version of an

asymmetric Baker’s Map. As such, it is immediately clear

that the Szilard Engine dynamics are chaotic [19, 20].

While the overall composite map TSzilard is impor-

tant, considering its complete-cycle behavior alone misses

much. What is key are the component maps that nom-

inally control a thermodynamic system, with each step
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FIG. 1. Szilard Engine as a deterministic dynamical system: the Szilard Map TSzilard = T A
Erase ◦ TControl ◦ TMeasure. Regions left

and right of δ colored to aid visually tracking particle ensemble history. Rightmost: Action of T 3
Szilard resulting in self-similar

(fractal) structure in density ρ̂; uniform ρ̂ requires η = γδ. These assume the Demon’s reset memory state is A. (Supplementary
Materials include an animation.)

corresponding to a different thermodynamic transforma-

tion. We now analyze the dynamics to see how the com-

ponent maps contribute to information processing and

thermodynamics. (Supplementary Materials give calcu-

lational details.)

Dynamical Systems Analysis What does chaos in

the Szilard Engine mean? The joint system gener-

ates information—the information about particle posi-

tion that the Demon must keep repeatedly measuring

to stay synchronized to the SUS and so extract energy

from the bath. On the one hand, it is generated by the

heat bath through state-space expansion during TC. And,

on the other, it is stored by the Demon (temporarily)

and must be erased during TE. The latter’s construction

makes clear that it, dynamically, contracts state-space

and so is locally dissipative.

With explicit equations of motion in hand, one can

directly check, by calculating the Jacobian ∂xyTSzilard,

that the map is globally area preserving. Moreover,

the invariant distribution ρ̂ can be determined from the

Frobenious-Perron operator [19, 20]:

ρ̂(x′, y′) =

∫
I2
dxdy δ

(
(x′, y′)− TSzilard(x, y)

)
ρ̂(x, y) .

(δ(·) here, and only here, is the Dirac delta-function.)

Calculation shows that ρ̂ has full support on the lower

portion of the unit square I ⊗ [0, γ] for all δ, γ ∈ (0, 1).

That said, the action of TSzilard builds up a self-similar in-

terleaving within ρ̂; as shown on the far right of Fig. 1 via

the third iterate of TSzilard and in the online animation.

In fact, the particle density is uniform when, during TE,

the Demon’s memory mesostate partition falls at η = γδ,

where η is the iterate of y = γ under T AErase. However, if

we change γ or δ so that η 6= γδ, ρ̂ is no longer uniform,

corresponding physically to a loss in efficiency of the De-

mon’s information extraction during measurement.

The Szilard Map Jacobian also determines its local lin-

earization and so one can easily calculate the spectrum of

Lyapunov characteristic exponents (LCEs) for the over-

all cycle and so realize the contribution of each protocol

step. This gives insight into the directions (submani-

folds) of stability (convergence) and instability (diver-

gence). There are two LCEs: one positive λ+ = H(δ)

and one negative λ− = −H(δ), where H(δ) is the (base

2) binary entropy function [21]. λ+ quantifies the expo-

nential spreading of the distribution along the SUS axis,

while λ− quantifies its exponential contraction along the

Demon axis. (See Supplementary Material for details.)

Note that energy conservation (TSzilard’s area preserva-

tion) is reflected in the exact balance of instability and

stability: λ+ + λ− = 0. The unstable manifolds (parallel

the x-axis) support the mechanism that amplifies small

fluctuations from the heat bath to macroscopic scale dur-

ing energy extraction (TC). The stable manifolds (paral-

lel the y-axis) are the mechanism that dissipates energy

into the ambient heat bath, during erasure (TE).

The overall information production rate is given by

TSzilard’s Kolmogorov-Sinai entropy hµ, which also quan-

tifies the degree of chaos of the map [22]. This chaotic

information production is necessary for an information

engine’s processing cycle. For the Szilard Engine, given

the well behaved nature of ρ̂, hµ =
∑
λ>0 λ = λ+ by

Pesin’s Theorem [20]. (That is, hµ = H(δ), directly veri-

fied shortly.) This entropy monitors the information gen-

erated in the SUS during the control step, as well as the

information erased in the Demon in the measurement and

erasure steps combined. In this way, it quantifies an effec-

tive flow of information from the SUS to the Demon. The

physical consequence, simply stated, is perhaps striking:

the degree of chaos determines the rate of energy extrac-

tion from the bath.

Computational Mechanics Analysis The Demon

memory and particle location mesostates form Markov

partitions for the Szilard Map dynamics [20, Chs. 7,9]:

tracking sequences of symbols in {A,B} or in {R,L} (or

all four pairs {AR,AL,BR,BL}) leads to a symbolic

dynamics that captures all of the joint system’s infor-
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mation processing behavior. We now use this fact to

analyze the various kinds of information processing and

introduce a way to measure the Demon’s “intelligence”

or, more appropriately, that of the entire engine. We do

this by calculating computational mechanics’ ε-machines

and ε-transducers from the engine’s symbolic dynamics.

The ε-machine for the Szilard Engine is a special

kind of hidden Markov model—the minimal unifilar

generator—of the observed symbol sequence. It’s unique

properties allow for exact calculation of many essential

information-theoretic properties [23]. The ε-transducer

is an extension that accepts control inputs, as well as

generates outputs [24, 25]. The overall engine transducer

is shown in Fig. 2(a), that for the SUS particle dynamics

in Fig. S2(a), and for the Demon memory dynamics in

Fig. S2(b).

In addition to explicitly expressing the effective mech-

anisms that support information processing, ε-machines

allow us to quantify the effects of measurement, control,

and erasure. The engine’s Kolmogorov-Sinai entropy hµ
can be calculated directly from the ε-machines’s causal-

state averaged transition uncertainty. To quantitatively

measure the minimal required memory—a key compo-

nent of “intelligence”—for the information engine func-

tioning, we employ the ε-machine’s statistical complex-

ity Cµ = H[Pr(σ)], where σ ∈ S are the system’s causal

states [24] and H[·] is the Shannon information [21].
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FIG. 2. ε-Transducers for the symbolic dynamics of the Szi-
lard information engine from the Markov partition of its joint
state space: (a) The ε-transducer for TSzilard that reads in the
periodic control signal for measure (M), control (C), and erase
(E). (b) TSzilard single-state ε-transducer: Memoryless over
the full measure-control-erase protocol. Transitions β|α : p
denote reading protocol symbol α, taking the transition with
probability p, emitting symbol β. Asymptotic state probabil-
ities are given in parentheses underneath state names.

It is important to emphasize an aspect of the informa-

tion engine ε-machine construction: It is stage-dependent

in that, to fully capture the component operations and

their thermodynamic effects, the individual maps must

be taken into account. This observation should be con-

trasted with the symbolic dynamics and particle posi-

tion ε-machine for the overall Szilard map. The resulting

process arises from stroboscopically observing the behav-

ior after driving the engine with the three-symbol word

MCE. As an example, the particle position process’s

ε-machine is shown in Fig. 2(b); it is a biased coin—a

single-state ε-machine with no memory: Cµ(TSzilard) = 0.

This is as it should be: The overall cycle must return to

the same state storing no memory of previous cycles.

Computational mechanics analysis shows that, over

the three-step cycle, the Engine has an entropy rate of

hµ = H(δ) as seen above (or H(δ)/3 per map step) and

a statistical complexity of Cµ = log2 3 + H(δ). (See Sup-

plementary Materials for details, including analysis of

SUS and Demon subsystems.) How predictable is the

Engine’s operation? The information in its future pre-

dictable from its past is given by the excess entropy :

E = I[
←−
Z ;
−→
Z ] = H[

←−
Z ]+H[

−→
Z ]−H[

←−
Z ,
−→
Z ], where

←−
Z is the

past and
−→
Z is the future of the joint process over random

variable Zt ∈ {A,B}⊗{R,L}. We see that the machines

in Fig. 2(a) and 2(b), driven by the protocol, are counifi-

lar and so E = Cµ [26]. Thus, we see that while the Szi-

lard Engine does not carry any information through one

measure-control-erase cycle to the next, within the three

steps of a single cycle, the engine stores log2 3+H(δ) bits

to operate.

Thermodynamics During each protocol step the En-

gine interacts thermodynamically with the heat bath.

The Supplementary Materials calculate the average heat

〈Q〉 and work 〈W 〉 flows between the Demon and the bath

and between the SUS and the bath during each step. For

this implementation of the Szilard Engine heat and work

are equivalent, since there is no change in the average in-

ternal energy of the particle contained by the box during

the isothermal measurement, control, and erasure pro-

tocol steps. Thus, we discuss only the heat, as energies

〈Qdiss〉 dissipated to the bath for each interaction. As we

will see, although γ—the Demon memory partition—did

not play a direct role in the informational properties, it

does in the thermodynamics.

The expected heat flow during measurement is

〈Qmeasure〉 = −kBT (1−δ) ln ((1− γ)/γ). Since γ ∈ [0, 1],

the dissipated heat can be negative or positive. It van-

ishes at γ = 1/2. Negative dissipated heat means that

the engine absorbs energy from the heat bath and, in that

case, turns it into work. The work
∫
P dV done by the

particle on the barrier is kBT H(δ) ln 2. Thus, the average

heat absorbed by the engine from the heat bath during

thermodynamic control is 〈Qcontrol〉 = −kBT H(δ) ln 2,

which is maximized when δ = 1/2. During memory era-

sure the Demon shifts back to its default state, without

affecting the SUS state. The barrier partitioning the
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Demon’s mesostates slides, compressing the contained

particle ensemble into the default state A, say. The

heat dissipated in this process is 〈Qerase〉 = kBT (1 −
δ) ln ((1− γ)/γ) + kBT H(δ) ln 2.

hQerasei hQmeasurei

hQcontroli

hQ
d
is

s
i[k

B
T

]

�

FIG. 3. Beyond Landauer’s Principle: Thermodynamic costs
(energy dissipation Qdiss) for measurement, control, and era-
sure in Szilard’s information engine as a function of γ (Demon
partition) with SUS barrier at δ = 1/2. Landauer’s Principle
applies only at γ = 1/2 (vertical yellow band): measurements
are thermodynamically free, erasure costs since heat is dissi-
pated as a result of Demon resetting. Costs exactly flip at
γ = 4/5, though.

While the heat dissipated during control is indepen-

dent of γ, both measurement and erasure can dissipate

any positive or negative amount of heat, depending on

γ. Notably, for γ > 1/2, the Szilard Engine demon-

strates an extension of Landauer’s Principle [15, 16] in

that 〈Qerase〉 ≤ kBT ln 2, but this is balanced by an in-

crease in 〈Qmeasure〉. Indeed, for γ = 4/5, erasure is

thermodynamically free and measurement takes on the

usual cost of erasure.

Figure 3 illustrates the trade-offs in thermodynamic

costs for each step. They sum to zero and so the Engine

respects the Second Law over the whole range of δ and

γ. The erasure and measurement steps together obey

the relation: 〈Qerase〉 + 〈Qmeasure〉 = kBT H(δ) ln 2, re-

covering trade-offs noted previously [17, 27–29]. That is,

the Szilard Engine achieves the lower bounds on energy

dissipation during measurement and erasure. And so, it

plays an analogous optimal role in the conversion of infor-

mation into work as the Carnot Engine does for optimal

efficiency when converting thermal energy to work.

Final Remarks We leveraged a straightforward ob-

servation to give a thorough dynamical systems, compu-

tational mechanics, and thermodynamic analysis of Szi-

lard’s Engine: an information engine’s intrinsic computa-

tion is supported by the evolution of its joint state-space
distribution and its thermodynamic costs monitor how

those distributional changes couple energetically to its

environment.

The Szilard Map construction is straightforward and

easy to interpret. For these reasons, we selected it to

illustrate the bridge between thermodynamics, informa-

tion theory, and dynamical systems necessary to fully

analyze information engines. The approach generalizes.

We can now state our central proposal : (i) an informa-

tion engine is the dynamic over a joint state space of a

thermodynamic system and a physically embodied con-

troller, (ii) the causal states of the joint dynamics, formed

from the predictive equivalence classes of system histo-

ries, capture its information processing and emergent or-

ganization, (iii) a necessary component of the engine’s

effective “intelligence”, its memory, is given by its statis-

tical complexity Cµ, (iv) its dissipation is given by the

dynamical system negative LCEs, and (v) the rate of en-

ergy extracted from the heat bath is governed by the

Kolmogorov-Sinai entropy hµ.

Sequels use this approach to analyze the informa-

tion thermodynamics of more sophisticated engines, in-

cluding the Mandal-Jarzynski ratchet [30], experimental

nanoscale information processing devices, and intelligent

macromolecules.

Supplementary Materials [36]: Calculational details,

further discussion and interpretation, and animations il-

lustrating a continuous-time embedding of TSzilard.
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