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Imperfections in experimental measurement schemes can lead to falsely identifying, or over es-
timating, entanglement in a quantum system. A recent solution to this is to define schemes that
are robust to measurement imperfections - measurement device independent entanglement witness
(MDI-EW). This approach can be adapted to witness all entangled qubit states for a wide range
of physical systems and does not depend on detection efficiencies or classical communication be-
tween devices. Here we extend the theory to remove the necessity of prior knowledge about the
two-qubit states to be witnessed. Moreover, we tested this model via a novel experimental imple-
mentation for MDI-EW that significantly reduces the experimental complexity. By applying it to a
bipartite Werner state, we demonstrate the robustness of this approach against noise by witnessing
entanglement down to an entangled state fraction close to 0.4.

Entanglement is one of the quintessential character-
istics of quantum physics and is a crucial resource for
emerging quantum applications. Entanglement-based
technologies are finding their way into an increasing num-
ber of application areas, spanning communication [1, 2],
simulation [3], computing [4] as well as sensing and
metrology [5]. An outstanding challenge is to find ways
to efficiently certify entanglement, with confidence, while
making few assumptions about the entangled state or
measurement system.

In practice, there are three main approaches for char-
acterizing entangled states: Quantum state tomography
(QST) [6], EntanglementWitnesses [7], and Bell inequali-
ties [8]. QST, uses local measurements on multiple copies
of the unknown state to estimate a density matrix ρ̂,
from which its fidelity, or the degree of entanglement,
can be computed. However, experimental errors can lead
to non-physical states being reconstructed [9]. Various
corrective techniques, can be used but this can lead to
an over-estimation of the degree of entanglement [10]. If
one is only interested in certifying entanglement, then an
entanglement witness can be used [11]. Again, if there
are errors in the implementation of the measurements,
for any of these approaches, then one cannot faithfully
witness entanglement [11]. A way to characterize en-
tanglement without taking into account the device im-
perfection relies on the violation of a Bell inequality [12],
however this approach requires a high detection efficiency
to close the detection loophole and can only detect the
entanglement of non-local states.

A novel solution to overcome these problems was re-
cently proposed, whereby instead of using classical in-
puts to perform a Bell test, these are replaced by trusted

quantum states [13, 14], the states are said to be trusted

if they can be prepared as requested without leaking in-
formation about the state description [14]. The resulting
measurement device independent entanglement witness
(MDI-EW) works for all entangled states with arbitrar-
ily low detection efficiency, is robust to (Bell state) mea-

surement imperfections, and classical communication be-
tween the measurement devices can never simulate the
violation [15].

Two photonic MDI-EW experiments have been per-
formed to witness bipartite entangled states in set-ups
that required six photons [16]. The concept is shown in
the top of FIG. 1, where the trusted inputs are encoded
on single photons by linear optic circuits (LOC). While
these showed the validity of MDI-EW, they are extremely
demanding experiments. In this Letter we extend the
MDI-EW theory to remove the need for any prior knowl-
edge of the qubit states to be witnessed in a scheme that
also greatly reduces the experimental overhead. As pre-
sented in FIG. 1 (bottom), our approach allows Alice and
Bob to encode the input qubit states using LOCs directly
in an extra degree of freedom of the entangled state us-
ing concepts recently introduced to implement detector
device independent QKD [17]. This removes the need
for the ancillae photons at the cost of assuming that the
entangled state under test resides in the qubit subspace.
We experimentally demonstrate this MDI-EW protocol
for a family of two qubit Werner states, and we witness
entanglement down to an entangled fraction close to 0.4.
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FIG. 1. Measurement Device Independent Entanglement
Witness concept. Top: An entangled state is probed with
locally prepared quantum inputs prepared by trusted Linear
Optic Circuits (LOC) and the (2 possible) results of the Bell
state measurements (BSM) are used to compute the witness.
Bottom: The simplified scheme uses trusted quantum states
encoded on an extra degree of freedom of the initial entan-
gled state using LOCs and the (4 possible) BSM outcomes
are used to compute the witness.
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Firstly, we introduce a new way to construct an MDI-
EW directly from experimental observations. As shown
in FIG. 1, Alice and Bob share a quantum state ρAB. At
each run of the experiment, Alice (Bob) prepares an input
state τx (τy), selected at random from the set {τ1...τm}
and each makes a joint measurement with part of the
shared state ρAB; note that the indices x, y of the selected
states are recorded by Alice and Bob, and not provided
to the devices.
Describing the measurement of Alice (Bob) by the

POVM {Aa} ({Bb}), the following correlations are ob-
served:

P (ab|τx, τy) = tr [(Aa ⊗Bb) (τx ⊗ ρAB ⊗ τy)] . (1)

When Alice and Bob share a separable state ρAB =
∑

k ρ
A
k ⊗ρBk , with ρAk , ρ

B
k > 0, their correlations are given

by:

PSEP(ab|τxτy) =
∑

k

tr
[

Aa

(

τx ⊗ ρAk
)]

tr
[

Bb

(

ρBk ⊗ τy
)]

.

(2)
A MDI-EW is defined as:

W =
∑

abxy

βabxy · P (ab|τx, τy), (3)

with the following properties:

• W < 0 for a particular entangled state ρAB and
specific measurements {Aa}, {Bb};

• W ≥ 0 when ρAB is separable, for all possible mea-
surements {Aa}, {Bb} (or, more generally, when
Alice and Bob share any classical resource, see be-
low).

The MDI-EW is thus characterized by a set of trusted
quantum input states {τx,y} and real coefficients βabxy,
and its violation certifies the presence of entanglement in
ρAB, without trusting the measurement devices.
Any entangled state can be detected by a suitable

MDI-EW [13]. Explicit constructions of these are given
in [14, 15, 18], however, the MDI-EW is violated only
when the shared state is close to the one used during the
construction of the witness, and when the measurements
are close to the Bell state measurements in the prescribed
bases.
Conversely, let us consider a MDI-EW-like scenario,

where correlations P (ab|τx, τy) are observed using a well-
characterized set of input states {τx,y}, without however
having the relevant witness coefficients βabxy. We show
below how to construct a value W ′ having the same prop-
erties as in Eq. (3) (W ′ ≥ 0 for separable resources), and
then, in a second step, how to create a MDI-EW tailored
for the setup considered. We sketch below the construc-
tion to be expanded on in future work [19].
We first observe that a compact description of the ex-

perimental setup, including the state ρAB as well as the

measurements {Aa} and {Bb}, is provided by the joint
POVM {Πab} acting on the input state τx ⊗ τy:

P (ab|τx, τy) = tr[Πab(τx ⊗ τy)]. (4)

This description is slightly more general than Eq. (1);
for example, it allows classical communication between
Alice and Bob’s devices. However, when Alice and Bob
share a separable state ρAB = ρSEP

AB , the POVM elements
Πab = ΠSEP

ab are separable:

ΠSEP
ab =

∑

k

ΠA
a,k ⊗ΠB

b,k, (5)

decomposed over ΠA
a,k,Π

B
b,k > 0. This can be seen from

Eq. (2), and in general, we have Πab = ΠSEP
ab when Al-

ice and Bob share classical resources [20]. The partial

transpose of (5),
(

ΠSEP
ab

)⊤A

=
∑

k(Π
A
a,k)

⊤ ⊗ ΠB
b,k > 0 is

nonnegative. Conversely, nonseparable Πab can have par-
tial transposes (Πab)

⊤A with negative eigenvalues — and
for qubits, nonseparable operators always have negative
partial transposes [7]. We decompose (Πab)

⊤A in parts
with positive and negative eigenvalues [21]:

(Πab)
⊤A = σ+

ab − σ−
ab, W ′ = −

∑

ab

min tr[σ−
ab], (6)

with σ±
ab > 0. Clearly, when ρAB is separable (or Alice

and Bob share classical resources), all Πab are separable,
and the minimum is obtained for σ+

ab = (Πab)
⊤A , σ−

ab = 0;
thus W ′ = 0. Conversely, W ′ < 0 certifies the presence
of entanglement in ρAB. Thus, the value W ′ satisfies the
properties outlined after Eq. (3); it can be easily com-
puted using a semidefinite solver [22], as equations (4)
and (6) define a semidefinite program.
We show in [23] how to extract MDI-EW coefficients

from the computation ofW ′, recovering the familiar form
of Eq. (3). This MDI-EW will be optimal for the current
setup with probabilities P (ab|τx, τy), but can neverthe-
less be applied to other setups as a valid MDI-EW as
long as the same set of input states {τx,y} is employed.
We present in [23] a comparison between the previous
approaches and our approach.
We now consider the problem of low detection efficien-

cies and losses. In our setup, we regroup all events where
non-detections occur (on either side) under an additional
outcome ∅, such that:

P (∅|τx, τy) +
∑

abxy

P (ab|τx, τy) = 1 for all x, y. (7)

Let Pη(ab|τx, τy) = ηP (ab|τx, τy), with Pη(∅|τx, τy) satis-
fying Eq. (7), be the correlations observed according to
some efficiency η > 0. Then, if the original P violates
the MDI-EW with W < 0, then Pη has Wη = ηW < 0,
as already described in [14].
In experiments involving CW-based SPDC sources the

fraction of non-detection events is unknown due to the
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FIG. 2. Experimental set-up. Polarisation entangled photon pairs are produced by first pumping a type-II periodically poled
lithium niobate (PPLN) non-linear crystal with a continuous laser, then by deterministically separating the degenerate photons
using a single channel dense wavelength division multiplexer (DWDM). The input qubits τx and τy are encoded directly onto
the path of the corresponding photon via a trusted linear optical circuit (LOC). Alice and Bob perform Bell state measurements
(BSM) using a half-wave plate (HWP) in the lower arm of the interferometers, and polarizing beam-splitters (PBS) on each
output arms followed by single photon detectors. L: lens; PMF: polarization maintaining fiber; SB: Soleil-Babinet; BS: beam-
splitter; S: shutter; QWP: quarter-wave plate; PZT: piezoelectric transducer.

random emission and detection times. In this case, we
apply the following estimation technique for P (ab|τx, τy).
Let N(abxy) be the number of observed events for out-
puts a, b and input states τx, τy, and N(∅xy) the (un-
known) number of non-detections for inputs τx, τy . When
the experiment is run for the same amount of time for all
pairs (x, y), with constant efficiency, we have N(xy) =
N(∅xy) +∑

ab N(abxy) = N∗, a constant. As observed,
the MDI-EW construction is insensitive to any rescaling
P → ηP , and N∗ can be chosen arbitrarily. For the
MDI-EW test, we use the following values:

P (ab|τx, τy) =
N(abxy)

N∗ , N∗ = max
xy

∑

ab

N(abxy), (8)

such that 0 ≤ P (ab|τx, τy) ≤ 1.
The MDI-EW does not depend on the detection ef-

ficiencies and classical communication between measure-
ment devices cannot simulate entanglement [18]. By con-
struction, any strategy based on separable resources us-
ing non-detections is already included in the POVMs of
Eq.(5) [25].
The experimental setup is shown in FIG.2. The en-

tangled photon pairs centered around 1564nm are gen-
erated by a SPDC process in a type-II periodically poled
lithium niobate (PPLN) crystal, pumped by a CW laser
at 782nm with a power of 50mW. To compensate the
temporal walk-off induced by the crystal birefringence

between the two orthogonally polarized photons, the pho-
ton pairs are directly coupled in a 1.44 m long polariza-
tion maintaining fiber (PMF) [26, 27]. The photons
are deterministically separated using a 100 GHz single
channel dense wavelength division multiplexer (DWDM)
slightly detuned from the central wavelength emission.
The energy conservation associated with the CW pump
laser introduces strong wavelength correlations such that
a polarization entangled state of the following form is pro-
duced: |Ψ+〉AB = 1√

2
[|H〉A|V 〉B + |V 〉A|H〉B] , where A

and B represent Alice and Bob, respectively. A g(2)(0) on
the order of 10−3 ensures that the double pair contribu-
tion is negligible. The relative phase is adjusted via the
Soleil-Babinet (SB) placed on Alice’s side, to generate
the |Ψ+〉AB polarization Bell state.

The trusted inputs qubits τx and τy are encoded onto
the optical path degree of freedom via two 50/50 beam-
splitters (BS) placed on each side (see FIG.2). The qubit
states are of the form |τ〉j =

[

|0〉+ eiϕj |1〉
]

/
√
2, where

we assign |0〉 and |1〉 to the lower and upper arm, respec-
tively. To set the phases ϕj a piezoelectric transducer
(PZT) is mounted on a mirror on the upper arm of the
interferometer. The two other states |0〉 and |1〉 are ob-
tained by blocking the appropriate arm of the interfer-
ometer using automated shutters (S). It should be noted
that to compensate the birefringence introduced by the
optical elements in the interferometer a tilted quarter-
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wave plate (QWP) is added in the lower arms.

A complete Bell state measurement (BSM) is per-
formed by first transforming |H〉 to |V 〉 and |V 〉 to |H〉
on the lower arm using a half-wave plate (HWP), then by
recombining the two arms on a 50/50 BS, and finally by
projecting in the {|H〉,|V 〉} basis using polarizing beam-
splitters (PBS) on both output arm. Each output of the
PBS corresponds to one of the following Bell states (see
FIG. 2):

|Ψ±〉 = 1√
2
(|H〉|1〉 ± |V 〉|0〉) ,

|Φ±〉 = 1√
2
(|H〉|0〉 ± |V 〉|1〉) .

(9)

To perform the measurement, the twofold coincidences
between the four single photon detectors (ID220 with an
efficiency of 20% and around 1kHz of dark-count) of Alice
and Bob are recorded via a time-to-digital converter.

To produce a Werner state of the form:

ρAB = λ|Ψ+〉〈Ψ+|AB + (1− λ)14 (10)

an additional pulsed, telecom-wavelength, laser is in-
jected inside the interferometers together with the pho-
ton pairs. The relative arrival time of the pulses in the
interferometers of Alice and Bob is set to observe coinci-
dence peaks in the same temporal windows as the photon
pairs. Two electronic adjustable polarisation controllers
driven by two uncorrelated random sequences are em-
ployed to obtain an unpolarized noise. Moreover, to de-
crease the Bell state weight λ, the repetition rate of the
pulsed laser is simply increased.

The set of input states employed to certify the en-
tanglement of the Werner states down to λ = 1/3 is
{τx,y} = {|0〉 ± |1〉; |0〉 ± i|1〉; |0〉; |1〉}. The coincidence
counts from the BSMs are recorded for all thirty-six pairs
of input states. Without additional noise, the average co-
incidence rate is about 16 counts per second for each out-
put, corresponding to a total detection efficiency around
3%. The integration time is set to 10 seconds for each
input pair such that, using automatic control of PZTs
and shutters, one complete measurement lasts about 6
minutes.

For each Bell state fraction λ, the number of observed
events Nλ(abxy) is collected, from which we reconstruct
the probability distribution Pλ(ab|τx, τy) according to
Eq. (8). However, due to finite statistics and noise, the
distribution Pλ does not satisfy Eq. (4) for Πab ≥ 0; thus
W ′ cannot be computed directly from Pλ as the semidef-
inite program is infeasible. The slight inconsistencies in
Pλ(ab|τx, τy) are corrected by looking for the closest reg-
ularized distribution Pλ satisfying Eq. (4) with Πab ≥ 0
— we use the Euclidean distance so that the computation
is another semidefinite program. Then, using the method
of [23], we construct a MDI-EW with the coefficients
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FIG. 3. Witness values for two-qubit Werner states with dif-
ferent weights λ. The data points βλ and βλ=0.94 correspond
to the results obtained when β are calculated for each points
and only for the first point, respectively. The uncertainty
associated with each point has been calculated using Monte-
Carlo algorithm and a Poissonian noise on the detection rate.

βλ
abxy tailored for the probabilities Pλ. However, we com-

pute the witness value Wλ =
∑

abxy β
λ
abxyPλ(ab|τx, τy)

using the original distribution Pλ, thus avoiding the in-
troduction of a bias in the estimation of Wλ [10]. The
computed witness values are plotted in FIG.3 (square
data points), starting from λ = 0.94. Note, λ < 1 due to
the intrinsic noise of the detectors. We observe that the
witness value saturates at W = 0 when entanglement
cannot be certified; this comes from the minimization
present in Eq. (6)

While convenient, this first approach has the disad-
vantage of using every dataset twice, first to construct a
MDI-EW, then to estimate the MDI-EW value. A more
robust approach is to compute the MDI-EW coefficients
once for some λ, and then apply the MDI-EW to the oth-
ers. We thus use β̂abxy = βλ=0.94

abxy to compute the values

Ŵλ =
∑

abxy β̂abxyPλ(ab|τx, τy), also plotted in FIG. 3
(circle data points). By linearity of Eq.(10), the witness
value Ŵλ becomes positive for separable Werner states.
For λ > 0.4, this second robust method performs slightly
worse, but avoids overadapting the MDI-EW to the noise
present in the correlations.

In both approaches, the entanglement of the Werner
states could not be certified all the way down to the
separability limit λ = 1/3. The reason for this is that
the values of the witness W are limited by the imperfec-
tions in the BSMs and the residual birefringence inside
the interferometers. They both induce small phase shifts
between the outputs of the BSMs and hence, effectively
reduce the value of the witness. The value W in FIG.3
can be related to a lower bound on the amount of entan-
glement present in the Werner state ρAB, as quantified
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by the negativity [19].

The MDI-EW not only simplifies the case of bipartite
entangled qubits, such as polarization. This MDI-EW
implementation can easily extended to n-partite states,
given the optimal scaling of the number of photons re-
quired (n vs 3n in the case of qubits encoded on heralded
single photons). If we further consider qudits, e.g. en-
coded in time bins, it only requires that the number of
spatial modes in the LOC correspond to the number of
time bins. Moreover, a single detector on each side would
project onto one Bell state, which is already enough to
witness the entanglement.

We have proposed and demonstrated a novel and prac-
tical measurement device independent entanglement wit-
ness protocol, certifying entanglement for a family of two
qubit Werner states down to a Bell state weight close
to 0.4. This protocol faithfully witnesses entanglement
without a priori knowledge of the form of the state under
test and is robust to (Bell state) measurement imperfec-
tions. Our approach replaces the need for additional sin-
gle photons to encode the input qubits by encoding these
directly on an extra degree of freedom of the entangled
photons; this has the advantage that even entangled pho-
ton pairs that are not pure in the spectral domain can
be characterized. Despite assuming the entangled state
lives in the qubit subspace, high order contributions will
only reduce the value of the witness violation, avoiding
falsely certifying entanglement. Moreover, all four Bell
state measurement outcomes can be used to reconstruct
the witness directly from the measured output probabil-
ities.

Given that this MDI-EW is completely robust against
detection inefficiencies and classical communication be-
tween the parties (BSMs), it opens up the interesting
question as to whether a similar approach could be ex-
ploited to characterize entanglement on stationary qubits
and to realize a more practical device independent quan-
tum random number generator, as it could overcome the
problems of needing space-like separated inputs and low
detection efficiencies.

Note added. Recently, we became aware of a simi-
larly motivated theoretical proposal [28] exploiting data
post-processing to better identify the targeted entangled
states.
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[12] A. Aćın, N. Gisin, and L. Masanes, Phys. Rev. Lett. 97,
120405 (2006); P. Skwara, H. Kampermann, M. Klein-
mann, and D. Bruß, Phys. Rev. A 76, 012312 (2007).

[13] F. Buscemi, Phys. Rev. Lett. 108, 200401 (2012).
[14] C. Branciard, D. Rosset, Y.-C. Liang, and N. Gisin,

Phys. Rev. A 110, 60405 (2013).
[15] D. Rosset, C. Branciard, N. Gisin, and Y. C. Liang, New

J. Phys. 15, 053025 (2013).
[16] P. Xu, X. Yuan, L.-K. Chen, H. Lu, X.-C. Yao, X. Ma, Y.-

A. Chen, and J.-W. Pan, Phys. Rev. Lett. 112, 140506
(2014); M. Nawareg, S. Muhammad, E. Amselem, and
M. Bourennane, Sci. Rep. 5, 8048 (2015).

[17] C. C. W. Lim, B. Korzh, A. Martin, F. Bussières,
R. Thew, and H. Zbinden, Appl. Phys. Lett. 105, 221112
(2014).

[18] C. C. W. Lim, Phys. Rev. A 93, 020101(R) (2016).
[19] D. Rosset et al., in preparation.
[20] E. Chitambar, D. Leung, L. Mančinska, M. Ozols, and
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