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Polymer networks invariably possess topological defects: loops of different orders which have pro-
found effects on network properties. Here, we demonstrate that all cyclic topologies are a universal
function of a single dimensionless parameter characterizing the conditions for network formation.
The theory is in excellent agreement with both experimental measurements of hydrogel loop fractions
and Monte Carlo simulations without any fitting parameters. We demonstrate the superposition of
the dilution effect and chain-length effect on loop formation. The one-to-one correspondence between
the network topology and primary loop fraction demonstrates that the entire network topology is
characterized by measurement of just primary loops, a single chain topological feature. Different
cyclic defects cannot vary independently, in contrast to the intuition that the densities of all topo-
logical species are freely adjustable. Quantifying these defects facilitates studying the correlations
between the topology and properties of polymer networks, providing a key step in overcoming an
outstanding challenge in polymer physics.

PACS numbers: 05.20.-y, 82.35.-x, 82.70.Gg, 82.33.Ln

Polymer networks are widely used for applications
ranging from commodity materials[1–4] such as superab-
sorbers, selective membranes, and high-impact rubbers
to biomedical materials such as drug delivery devices, tis-
sue engineering scaffolds and extracellular matrix[5–14].
However, effectively characterizing the structure of poly-
mer networks and understanding the correlation between
the topology and properties remains an outstanding chal-
lenge. Much of our fundamental knowledge about poly-
mer networks is based on homogeneous acyclic tree-like
structures[1, 15–21]. Although the spatial inhomogene-
ity in polymer networks can be reduced by endlinking
of precursor chains via f-functional junctions[22] (Figure
1a), all polymer networks inevitably possess topological
defects: loops (Figure 1b) formed by intrinsic intramolec-
ular reactions. These cyclic defects weaken the materi-
als depending upon the type of loop structure formed:
primary loops are completely elastically inactive, while
higher-order loops may contribute to elasticity differently
depending upon their specific topology. Our inability
to quantify these aspects of network structure hinders
our ability to quantitatively predict the mechanical re-
sponse of polymer networks. For example, a systematic
treatment of loop structure is essential for testing the
validity of the affine and phantom network models in
real polymer networks, a long-standing problem in poly-
mer science[15]. Beyond polymer networks, cyclic defects
suppressing the spread of information also exist in many
other networks[23, 24], such as routing loops in computer
networks and acquaintance clusters in social networks.
Therefore, understanding and controlling cyclic defects
is critical to many forms of network science and engi-
neering.

Theoretical efforts have addressed the delay of the gel-
point due to loop formation[25–28]; however, the intrinsic

FIG. 1: Schematic of end-linked polymer networks. (a) Gen-
eral endlinking reaction between a bifunctional polymer pre-
cursor (A2) and a trifunctional junction (B3). (b) Schematic
of a network with different orders of cyclic defects. (c) An
exhaustive list of subgraphs considered in the modified rate
theory for stoichiometric endlinking at full conversion.

dependence of the cyclic topology on the condition un-
der which the polymer network is formed as well as the
inherent relations between different orders of loop struc-
tures are unknown[29, 30]. Experimental techniques such
as rheology/spectroscopy and multiple-quantum NMR
can provide semi-quantitative information related to the
loop structure[31–33]. Recently, Zhou et al. reported
‘network disassembly spectrometry’ (NDS), which is the
first experimental method for directly quantifying pri-
mary loops[34, 35]. Theory that can fully describe the
dilution and chain-length effects on primary loop frac-
tion observed in experiments is lacking. Previous the-
oretical work need to use different fitting parameters
for the same polymer as chain length varies[35]. More-
over, recent experimental results show that the modu-
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lus of real networks deviates significantly from ideal net-
work models, even though the primary loop effect has
been either eliminated by designing the precursors[36] or
corrected through subtracting the wasted strands mea-
sured by NDS[37]. This discrepancy demonstrates the
pronounced role of higher order loops not captured by
previous theories. While the effect of primary loops on
network mechanics is well understood, the elastic effec-
tiveness of polymer strands in higher order loops is un-
known. Therefore, it is desirable to understand higher
order topologies within polymer networks, so that the
impacts of different cyclic defects on network properties
can be decoupled and quantified separately.

Here we consider a network prepared via endlinking
bifunctional (A2) polymer precursors and trifunctional
(B3) junctions (Figure 1a). To describe both the topol-
ogy of polymer networks and the kinetics of network for-
mation, we develop a modified rate theory based on the
work of Stepto[38–40], which is a kinetic graph theory
using a set of finite number of subgraphs to represent
the unmanageably large network. The formation and
inter-conversion of different subgraphs is tracked through
a coupled system of differential equations. Here, sub-
graphs are restricted to a critical size of two nodes; cyclic
topologies formed within the critical size are recorded
(see Supplementary Section I for the list of all 42 sub-
graphs considered for the A2+B3 system[41]). Each func-
tional group on the junction may be unreacted, contain a
dangling chain, contain a looped chain, or be connected
to the network through a bridging chain. Beyond the
critical size, junctions are assumed to be uncorrelated,
which can randomly react with each other. For func-
tional groups belonging to different subgraphs, the rate
for forming the bridge connecting these two subgraphs is
given by

Rij,bridge = kAB[Ai][Bj ] (1)

where kAB is the second order rate constant,and [Ai]
and [Bj ] are the instantaneous concentrations of A and
B functional groups on species i and j, respectively.
Since the initial polymer concentrations for all exper-
imental data to be described in this work are beyond
the dilute polymer solution regime, the polymer pre-
cursor A2 is modeled as monodispersed flexible Gaus-
sian chain. In this case, the rate of forming an in-
tramolecular loop depends upon the probability of the
two ends of an nth-order chain encountering each other,

Pn =
(

3/2πn〈R2〉
)3/2

. 〈R2〉 = (M/m) b2 is the mean-
square end-to-end distance of polymers which can be es-
timated from the molar mass of A2 (M), the published
values of Kuhn length (b), and the molar mass of a Kuhn
monomer (m). Hence, for groups belonging to the same
subgraph, the rate of forming the intramolecular loop is

given by

Ri,loop = kAB

Nn
A,i

Nav

(

3

2πn〈R2〉

)3/2

[Bi] (2)

where Nn
A,i is the number of functional group A con-

tained in subgraph i which can form the nth-order loop,
and Nav is Avogadro’s number. This theory can be easily
generalized to polymer precursors with other chain statis-
tics, such as semiflexible polymers[43], by re-evaluating
the probability density for closing the loop in the cor-
responding chain statistics[44], and to polymer network
systems with different junction functionalities or disperse
chain lengths. Furthermore, the theory can also be ap-
plied to study the formation and the structure of cyclic
defects in other types of networks[23, 24].

Compared to previous work which focused only on a
single junction, this work expands the set of subgraphs
to all possible configurations containing two junctions
(see Figure 1c for subgraphs present in stoichiometric
endlinking at full conversion. Increasing the critical size
of subgraphs enables a more accurate description of local
correlations between junctions and allows simultaneous
quantification of both primary and higher order loops.

Comparison between the two junction rate theory and
experimental measurements of loops in polymer networks
shows quantitative agreement between theory and ex-
periment with no variable parameters. Loop fractions
fn (the fraction of all junctions contained in one nth-
order loop) predicted by the two junction theory are
compared to the published NDS experimental data[35]
for poly(ethylene glycol) (PEG) networks and the Monte
Carlo (MC) simulations (see Supplementary Section II
for a description of MC algorithm). The order of a loop
is defined as the number of chains required to close the
loop (Figure 1c). Figure 2 plots loop fractions fn ver-
sus the initial polymer molar concentration (c) concen-
tration for PEG precursors with three different chain
lengths[45]. As shown in Figure 2a, the primary loop
fraction predicted by our theory is in excellent agree-
ment with both the experimental data and MC simula-
tions. Using intrinsic parameters of PEG reported in the
literature[15] (Kuhn length b=1.1nm and molar mass of
Kuhn monomer m=137g/mol), the two junction theory
can quantitatively describe both the dilution and chain
length effects on the primary loop fraction; this is su-
perior to previous work which used the Kuhn segment
length as a fitting parameter, resulting in discrepancies
as chain length was varied.[35]

The two junction theory is also able to predict the
secondary loop fraction f2 (Figure 2b) which cannot yet
be quantified experimentally. Unlike the monotonic de-
cay of f1, the concentration dependence of f2 presents
a maximum with the same peak value for different PEG
precursors. The secondary loop fraction predicted by the
theory is in good agreement with the MC simulations (es-
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FIG. 2: Figure 2. (a) Primary loop fraction f1 and (b) sec-
ondary loop fraction f2 vs. initial polymer molar concentra-
tion c calculated by the modified rate theory in comparison
with the experimental data and MC simulation. In both the
theory and simulation, the Kuhn length and molar mass of
Kuhn monomer of PEG are chosen as b =1.1nm and m =137
g/mol.[15]

pecially for longer PEG) in the entire concentration re-
gion except the neighborhood of the maximum, because
intramolecular correlations beyond two junctions, which
are accounted for in the MC simulation, are assumed to
be absent in the theory.

A dimensional analysis shows that cyclic defects de-
pend on a single universal parameter characterizing the
formation condition of networks. For stoichiometric
endlinking at full conversion as the cases studied in figure
2, the dimensionless loop fractions fn must be uniquely
determined by the dimensionless variable c〈R2〉3/2 =

cb3 (M/m)3/2 that diminishes the volume unit. This
variable characterizes the ratio between the intramolecu-
lar distance (edge connecting junctions within the same
graph) and the intermolecular distance (edge between
junctions in different graphs). When plotted against this
dimensionless variable, fn for different chain lengths in
Figure 2 collapse into master curves as shown in Figure

3a, suggesting a superposition of the dilution effect and
the chain length effect, with the principle given by

fn (M2, c2) = fn (M1, αMc1) (3)

where αM = (M1/M2)
3/2 is the shift factor for changing

molar mass from M1 to M2. The experimental data for
polymer precursors of different chain lengths spans dif-
ferent regions along the master curve, joining together to
form the entire ‘loop spectrum’. The different scaling of
c and M indicates that chain length is more effective in
controlling loop fraction than concentration. The NDS
experimental data shown in Figure 2 is restricted to PEG
networks; however, the master curves presented in Fig-
ure 3a are universal for networks endlinked by all types of
flexible polymers, given the corresponding Kuhn length
and molar mass of Kuhn monomer. Therefore, this the-
ory can be applied to a broad range of networks where
the NDS technique is currently not applicable. While
the exact form of the master curves depends on the func-
tionality of junctions, the superposition principle for the
dilution effect and chain length effect revealed here is ex-
pected to demonstrate a universal property for all junc-
tion functionalities.
Besides the overall loop fraction, this theory also cap-

tures the short-range correlations between loops and ideal
junctions, which provide insight on the spatial distribu-
tion of cyclic defects in networks. Based on the correla-
tion between two primary loops, the entire loop spectrum
can be divided into three regions (Figure 3b). In region

1, fTree/fDumbbell < 10−3 (or cb3 (M/m)
3/2

<∼ 0.1);
the tree structure that separates different loops is ab-
sent and primary loops are fully correlated (see Supple-
mentary Section III for the topological structure): the
network is sol. In region 3, fTree/fDumbbell > 103 (or

cb3 (M/m)
3/2

>∼ 10); primary loops are rare, dumb-
bell primary loops (short-range correlations) disappear,
and the tree structure dominates. The network (prob-
ably an elastomer or gel) is locally disturbed by loops
without losing its long-range connectivity. Each primary
loop is isolated, and the loop or bridge state of each
chain is independent. Therefore, the gel can be envi-
sioned as an “ideal loop gas”. The impact of each loop
on the network properties is linearly additive. Region
2 (103 > fTree/fDumbbell > 10−3) is most accessible in
experiment and meanwhile most complicated due to the
coexistence of all species. Due to the saturation of junc-
tion functionality, the formation of different topologies
is not unconstrained but competitive, which is reflected
by the nonmonotonic change in the fraction of single pri-
mary loops. Different cyclic defects weaken the network
cooperatively in this region: the strands connecting two
adjacent loops cannot be perceived as completely elas-
tically active. Network properties depend on both the
number of loops as well as their spatial arrangement.
Despite the presence of correlation between loops and
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FIG. 3: Universal cyclic topology of polymer networks. (a) Master curves of primary and secondary loop fractions on the

single dimensionless variable cb3 (M/m)3/2 characterizing the network formation condition. (b) Plot of calculated fractions of

different topological structures vs. cb3 (M/m)3/2 in the logarithm scale to illustrate three regions in the loop spectrum. (c)

Linear relation between 1/f1 and cb3 (M/m)3/2. (d) Loop diagram by plotting f2 and f3 vs. f1.

ideal junctions in region 2, it is surprising that 1/f1 ver-

sus cb3 (M/m)3/2 exhibits a linear relation (Figure 3c),
which leads to an analytical expression similar to the
Langmuir adsorption isotherm as

f1 =
1

1 + kcb3 (M/m)
3/2

(4)

with the coefficient k (slope of the line) depending

on junction functionality. f ≈
[

cb3 (M/m)3/2
]−1

as

cb3 (M/m)
3/2

≫ 1. This slow decay implies that achiev-
ing loop fractions close to zero is extremely difficult. The
fact that primary loop fraction follows this mean-field
type description suggests some renormalization treat-
ment of loops to remove the correlation.
Because the number of primary loops is a one-to-one

function of cb3 (M/m)
3/2

and because all topologies de-

pend solely on cb3 (M/m)3/2, knowledge of the primary
loop fraction is sufficient to determine the number of all
higher order topological structures in the network. This
is illustrated as the ‘loop diagram’ in Figure 3d. For very
small f1 where different loops are uncorrelated, f2 and
f3 increase linearly, with the slope fn/f1 = n · n−3/2 in
agreement with the intrinsic probability of closing Gaus-
sian chains. With f1 increasing, fractions of higher or-
der loops deviate downward from linearity, reaching a
maximum and dropping to 0 as f1 approaches 1. This
strong nonmonotonic behavior indicates the competition
in forming different loops due to the saturation of junc-
tion functionality. In particular, the existence of primary
loops excludes the formation of higher order loops. The
maximum of f3 appears at lower value of f1 compared to
the maximum of f2, which indicates that the formation of
the higher order loop is more sensitive to the connectivity
of its neighbor environment in the network. Furthermore,
the fraction of higher order loops is comparable to f1, e.g.
f2 + f3 = 0.18 as f1 = 0.2; therefore, higher order struc-
tures cannot be ignored. This explains why the network
modulus observed in experiments cannot be described by
only correcting for the primary loop effect[36, 37].

Intuitively, one can envision many combinations of
different topological defects (primary loops, secondary
loops, etc.) that result in identical mechanical proper-
ties but varying primary loop fractions. However, results
shown in Figure 3d demonstrate that the relative popu-
lations of different topological defects are not freely ad-
justable; fractions of all higher order loops are uniquely
determined once f1 is fixed. Statistically, there is one-to-
one correspondence between network topology and pri-
mary loop fraction, universal for all flexible polymers. In
other words, polymer networks can be uniquely catego-
rized using the primary loop fraction, providing a more
universal experimental observable to determine network
topology than the variety of preparation conditions used
in most previous studies. This categorization also facili-
tates directly mapping the cyclic defects in polymer net-
work topology to the mechanical properties. Our results
imply that any networks will have the same dimensionless
modulus (G/νkT , where ν is the total density of polymer
strands in the network) if they belong to the same loop
category (same f1). For the same monomer functionality
(A2+B3 in this work) and process for network synthesis,
G/νkT is uniquely determined once f1 is fixed.

The two junction rate theory also facilitates the study
of the loop formation kinetics during network forma-
tion. As shown in Figure 4, the evolution of the pri-
mary loop fraction predicted by our theory is in excel-
lent agreement with the NDS experimental data. Pri-
mary loops and secondary loops, generated from isolated
intramolecular connection, are accumulated smoothly as
conversion increases. On the contrary, the fraction of
tree structures, related to the cooperative intermolecular
connection, presents a sharp increase at higher conver-
sion due to preferential formation of bridges. This can
also be illustrated by the inset showing fTree/fDumbbell

and fTree/fSingleLoop.) This sharp increase occurs at a
conversion slightly larger than 0.7, the gel point of loop-
free networks[1], which implies a global change of the
network topology.

These results show the universal cyclic topology of
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polymer networks and its intrinsic dependence on the for-
mation condition by studying flexible polymers endlinked
via trifunctional junctions. Both the theory and conclu-
sions can be generalized to more complicated polymer
network systems with polydisperse chain length as well
as other junction functionalities and chain statistics (e.g.
semiflexible polymers). The universal cyclic topology
found in polymer networks is also anticipated to provide
inspirations in the study of other types of networks, such
as computer, biological and social networks. The theory
shows excellent agreement with the NDS experimental
data without any fitting parameters, and can be applied
to a broad range of networks where the NDS technique
is currently not applicable. Quantifying different cyclic
defects separately in this work enables decoupling their
impacts, which is essential for developing correlations be-
tween topology and mechanical properties, an outstand-
ing challenge in polymer science. Unifying the dilution
and chain length effects for network formation greatly
reduces the parameter space experimentally available to
tune network properties, providing a key step towards
predictably design the material properties by introducing
the right amount of loops within polymer networks[46].
The universal relation between different cyclic defects in-
dicates that different loop fractions cannot vary indepen-
dently, in stark contrast to the intuition that arbitrary
combinations of different loops can be synthesized. Once
the primary loop fraction is known (which is now mea-
surable in experiments), the polymer network topology
is fully defined.
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