
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Magnetic Vortex Induced by Nonmagnetic Impurity in
Frustrated Magnets

Shi-Zeng Lin, Satoru Hayami, and Cristian D. Batista
Phys. Rev. Lett. 116, 187202 — Published  5 May 2016

DOI: 10.1103/PhysRevLett.116.187202

http://dx.doi.org/10.1103/PhysRevLett.116.187202


Magnetic Vortex Induced by Non-magnetic Impurity in Frustrated Magnets

Shi-Zeng Lin1, Satoru Hayami1,2, and Cristian D. Batista1,3

1Theoretical Division and CNLS, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
2Department of Physics, Hokkaido University, Sapporo 060-0810, Japan

3Department of Physics and Astronomy, The University of Tennessee, Knoxville, Tennessee 37996, USA

We study the effect of a non-magnetic impurity inserted in a 2D frustrated ferromagnet above its saturation
magnetic field Hsat for arbitrary spin S. We demonstrate that the ground state includes a magnetic vortex that
is nucleated around the impurity over a finite range of magnetic field Hsat ≤ H ≤ HI

sat. Upon approaching
the quantum critical point at H = Hsat, the radius of the magnetic vortex diverges as the magnetic correlation
length: ξ ∝ 1/

√
H −Hsat. These results are derived both for the lattice and in the continuum limit.

PACS numbers: 75.10.Hk, 75.10.-b 75.30.Kz,05.50.+q

Introduction. It is known that magnets with competing
interactions can support metastable skyrmion solutions [1].
Magnetic skyrmions are particle-like spin textures of topolog-
ical origin, which can be found in non-centrosymmetric (chi-
ral) magnets with competing ferromagnetic (FM) exchange
and Dzyaloshinskii-Moriya interaction [2, 3], or in frus-
trated (non-chiral) magnets with competing exchange inter-
actions [4, 5]. In the light of these results, it is natural to
ask if similar topological structures can be rendered thermo-
dynamically stable by introducing impurities. This question
can be addressed by considering the case of frustrated mag-
nets near a Lifshitz transition between incommensurate spiral
ordering (ordering wave vector Q 6= 0 ) and Q = 0 FM order-
ing. As we demonstrate in this Letter, a simple non-magnetic
impurity is enough to nucleate a magnetic vortex above the
saturation field Hsat required to fully polarize the spins of
the clean system. The vortex state emerges below the local
saturation field around the impurity, HI

sat > Hsat, and its ra-
dius is equal to the magnetic correlation length, ξ, which di-
verges as ξ ∝ 1/

√
H −Hsat upon approaching the quantum

critical point (QCP) at H = Hsat. The mean field exponent
ν = 1/2 is characteristic of QCP’s in the Bose-Einstein uni-
versality class, where the driving parameter (H) couples to a
conserved quantity [6].

We present a general theory based on a semi-classical anal-
ysis of the continuum theory, which is complemented by an
exact solution of the problem on a lattice. We start by consid-
ering a spin S triangular lattice (TL) Heisenberg model with
FM nearest-neighbor (NN) exchange, J1 < 0, and AFM third
NN exchange J3:

H = J1

∑
〈j,l〉

Sj · Sl + J3

∑
〈〈j,l〉〉

Sj · Sl −H
∑
j

Szj . (1)

The relative position vectors of the NNs in the TL are ±eν ,
with e1 = x̂, e2 = −x̂/2+

√
3ŷ/2 and e3 = −x̂/2−

√
3ŷ/2.

The main role of J1 and J3 is to produce a momentum space
interaction, J(q) =

∑
j=1,3(J1 cosq · ej + J3 cos 2q · ej)

with global minima at finite wave-vectors ±Qν of magni-

tude Q = |Qν | = 2 arccos
[

1
4

(
1 +

√
1− 2J1

J3

)]
, which are

connected by the C6 symmetry group of the TL. The sys-
tem is a ferromagnet for J3 < −J1/4. The onset of a fi-

nite ordering wave-vector above J3 = −J1/4 signals a Lif-
shitz transition from FM to incommensurate AFM ordering.
Correspondingly, Hsat also becomes finite for J3 > −J1/4:
Hsat = −SJ(Qν) + 3S(J3 + J1). Right above J3 = −J1/4,
we can expand in the small parameter δ = 3(J1+4J3)/(2J3):

Hsat ' 6Sδ2J2
3/(J1 + 32J3) and Q ' 2

3

√
δ, (2)

which implies that Hsat ∝ Q4 near the Lifshitz point.
We will assume that δ > 0 and H > Hsat. We want to

know the effect of replacing a spin by a non-magnetic impu-
rity. It has been shown recently that non-magnetic impuri-
ties lead to non-coplanar spin structures in the TL Heisenberg
model with only NN AFM interaction [7–10]. In contrast,
here we will consider the effect of non-magnetic impurities on
frustrated magnets with competing FM and AFM interactions.
Given the FM nature of J1, HI

sat turns out to be higher than
Hsat, implying that the spins should cant away from the z-axis
around the non-magnetic impurity forHsat ≤ H < HI

sat. The
spin texture far away from the non-magnetic impurity can be
obtained by taking the continuum limit Q � 1. In this limit,
H can be reexpressed as

∫
dr2[Hiso(r) + Hani(r)], with the

Hamiltonian densities

Hiso= −δ
2
J3(∇S)2 +

3

64
(J1 + 16J3)

(
∇2S

)2 −H · S,

Hani=A[11
(
∂3
xS
)2

+15
(
∂2
x∂yS

)
2+45

(
∂x∂

2
yS
)2

+9
(
∂3
yS
)2

],

up to sixth order in a gradient expansion and A = (J1 +
64J3)/7680. Given that the leading order amplitude of the
C6 anisotropy isQ6, we can neglectHani forQ� 1. We will
rescale our energy, length and magnetic field units in order to
normalize the Hamiltonian coefficients [5]:

Hiso =

∫ [
−δ

2
(∇S)2 +

1

2
(∇2S)2 −H · S

]
dr2. (3)

In the new units we have Hsat = Sδ2/4 and Q =
√
δ/
√

2.
Equation (3) is the universal theory for centrosymmetric frus-
trated magnets near a Lifshitz point.

The non-magnetic impurity can be modeled by modifying
the stiffness −δ: δ is enhanced near the origin because of the
suppression of J1 on the bonds connecting the non-magnetic



impurity and its NNs. To allow for an analytical solution we
consider a step-like modulation of the stiffness:

δ̃(r) = δ[1 + ∆0Θ(r0 − r)], (4)

where Θ(x) is the Heaviside step function, r0 is the range over
which the local stiffness is modified by the presence of the
impurity, and ∆0 is a positive dimensionless parameter. The
choice of the step function is arbitrary because details of this
non-universal function do not affect the asymptotic behavior
of the solution for r >> r0.
HI

sat corresponds to the magnetic field value at which the
lowest energy mode of the fully polarized (FP) state becomes
gapless. The nature of the instability below H = HI

sat is
determined from the structure of the lowest energy mode.
We will obtain this mode from a semi-classical expansion
of Hiso, which turns out to be exact for arbitrary spin S.
To describe the small oscillations around the ground state
configuration, we introduce the bosonic field ϕ(r) via the
Holstein-Primakoff transformation: S+

r = Sxr + iSyr =√
2S −ϕ†(r)ϕ(r) ϕ(r) and Szr = S − ϕ†(r)ϕ(r). By

expanding Hiso
J1−J3 up to quadratic order in ϕ(r), we obtain

the spin-wave Hamiltonian density :

Hsw
J1−J3 = Hϕ†ϕ− δ̃(r)S∇ϕ†∇ϕ+ S∇2ϕ†∇2ϕ. (5)

The resulting equation of motion for ϕ(r) is:

−i∂tϕ = Hϕ− δ̃(r)S∇2ϕ+ S∇4ϕ. (6)

In absence of the impurity, the eigenmodes are magnons
with a dispersion relation,

ωk = −δSk2 +Sk4 +H = S

(
k2 − δ

2

)2

+H − Sδ
2

4
. (7)

This expression shows explicitly that Hsat = Sδ2/4, i.e., the
magnon gap is ∆s = H − Sδ2/4. H enters as an additive
constant that shifts the whole spectrum because it couples to
the conserved quantity SzT =

∫
Szrdr

2.
In presence of the impurity, the spatially uniform stiffness

−δ must be replaced by the non-uniform stiffness, −δ̃, of
Eq. (4). The eigenmodes, ψ†|0〉, are now created by oper-
ators of the form ψ† =

∫
ψ∗(r)ϕ†(r)dr2, where ψ(r) is an

eigenfunction of the operatorH−Sδ̃(r)∇2+S∇4. Given that
rotational symmetry around the origin is still preserved, it is
convenient to introduce polar coordinates r = r(cosφ, sinφ)
and work in the basis of eigenstates of Hsw

J1−J3 with well de-
fined angular momentum l. These propagating circular waves
are described by the function Jl(kr)eilφ, where Jl(kr) is the
l-th Bessel function of the fist kind:

∇2[Jl(kr)e
ilφ] = −k2Jl(kr)e

ilφ. (8)

For r ≤ r0, the stiffness is constant and equal to −δ(1 +
∆0), implying that the eigenmodes in this region are linear
combinations of two circular waves

ψ(r ≤ r0) = A1Jl(q+r)e
ilφ +B1Jl(q−r)e

ilφ, (9)
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FIG. 1. (color online) Binding energies ∆l
b for l = 0, 1, 2 as a func-

tion of ∆0 for (a) r0 = 2 and (b) r0 = 4. Panels (c) and (d) show the
difference between the energies of the l = 1, 2 and the l = 0 bound
states for r0 = 2 and r0 = 4, respectively.

with q± =
δ(1+∆0)±

√
δ2−4H/S−4ω/S+2δ2∆0+δ2∆2

0√
2

. The
bound states must decay exponentially for r → ∞. There-
fore, for r > r0 we need to use the modified Bessel functions
of the second kind, which satisfy:

∇2[Kl(kr)e
ilφ] = k2Kl(kr)e

ilφ. (10)

Once again, the eigenfunction for r > r0 is a linear combina-
tion of two functions

ψ(r ≥ r0) = A2Kl(k+r)e
ilφ +B2Kl(k−r)e

ilφ, (11)

with momenta k± =
−δ±
√
δ2−4H/S−4ω/S√

2
, which produce

an exponential decay for r →∞. We note that δ2 − 4H/S −
4ω/S > 0 because bound states must lie below the magnon
gap ∆s = H − Sδ2/4. The last part of the calculation is to
impose continuity at r = r0 of the the eigenmodes and their
derivatives up to third order. This condition arises from the
fourth order nature of the differential equation (6).

The problem is analogous to the 2D quantum mechanical
problem of a single particle with an effective mass that de-
pends on the distance to the origin. The only important dif-
ference is that the manifold of kinetic energy minima is a
ring of radius k = Q instead of a point at the origin [see
Eq. (7)], implying that the density of single-magnon states,
ρ(ω), has the same Van Hove singularity as a 1D system
when ω approaches the bottom of the single-magnon disper-
sion ω = ∆s: ρ(ω) ∝ 1/

√
ω −∆s for ω → ∆s. This be-

havior leads to the formation of a bound state for an infinites-
imal attractive potential well. As shown in Figs. 1 (a) and
(b), the 1D-like divergence in ρ(ω) produces a binding energy,
∆b = ωb−∆s ∝ −∆2

0, in contrast to the milder essential sin-
gularity of the usual 2D problem with a single minimum.

The effective attraction produced by an increase in |δ(r)|
for r < r0 acts on all the circular waves with different angular
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FIG. 2. (color online) Vortex solutions for Hsat < H < HI
sat obtained from numerical simulations ofH in the classical limit (S →∞). (a-c)

Vortex bound to a single-site non-magnetic impurity for different field values. The vortex helicity is arbitrary due to the U(1) symmetry ofH.
(d) Giant vortex solution (l = ±2) obtained after removing the spins from the six sites indicated with black dots, for J3 = −0.2777J1 and
Q = 2π/12. The saturation field is Hsat = 0.02235|J1|, and HI

sat = 0.04725|J1|.

momenta l. Given that the singularity in ρ(ω) does not depend
on l, a bound state must appear in each l-channel. A lowest
energy bound state with finite l implies that a vortex solution
with winding number l should emerge right below HI

sat. For
weak attraction, ∆0 � 1, the amplitude of the attractive in-
teraction in each channel is

gl(r0) = Q3S∆0

∫ r0

0

J2
l (Qr)dr. (12)

Given the asymptotic form of the Bessel functions for small
argument, Jl(z) ' (z/2)l/Γ(l + 1) for 0 � z �

√
l + 1,

gl is maximized for l = 0 if r0 � 1. However, as shown in
Fig. 1(b), this is not necessarily true for r0Q & 1. In partic-
ular, gl acquires its maximum value for l = ±1 when r0Q
becomes of the order or bigger than the first root of J1(z).
Moreover, a generalized impurity that increases |δ(r)| in the
ringR−r0/2 < r < R+r0/2 will maximize gl for |l|-values,
which increase monotonically with R. This type of impurity
corresponds to removing spins from a ring of sites, instead of
the single-site (R = r0/2) that we are currently considering.

Figures 1(a) and (b) show the binding energies of the bound
states in the l = 0, 1, 2 channels as a function of ∆0 for r0 = 2
and for r0 = 4. Interestingly enough, the l = ±1 bound state
becomes the ground state above a critical value of the impurity
potential ∆0 for r0 = 2, while it is already the ground state
for arbitrarily small values of ∆0 if r0 = 4. According to this
result, the leading instability around an impurity in a frustrated
magnet can be a magnetic vortex with winding number l =
±1. Moreover, strong impurity potentials can produce lowest
energy bound states with even higher l values.

Our semiclassical analysis of the continuum theory implies
that the FP state is unstable towards a new ground state in
which the spins near the non-magnetic impurity are canted
away from the field axis. The spin component perpendicular
to the field axis must exhibit a finite winding number l (vor-
tex state) under quite general conditions. Finding the actual
distortion below HI

sat for arbitrary spin S requires solving a
complex many-body problem. However, this problem can be

solved in the classical limit by minimizing the Hamiltonian
energy functional given in Eq. (1). This is done by numeri-
cally solving the Landau-Lifshitz-Gilbert equation of motion,
∂tS = −S×Heff +αS×∂tS,where α is the Gilbert damping
parameter and Heff ≡ −δH/δS is the effective magnetic field
acting on each spin. The non-magnetic impurity is introduced
by setting the spin at the origin to 0: S0 = 0. Consistently
with our previous analysis, a vortex is nucleated around the
impurity once the system is allowed to relax from an initial
FP state. The result is independent of the value of α. As
shown in Figs. 2 (a), (b) and (c), the linear vortex size in-
creases upon approaching H = Hsat. Indeed, by solving the
Euler-Lagrange equations of the continuum model of Eq. (3)
for Hsat < H < HI

sat, one can verify that the vortex am-
plitude (tilting of the spins away from the z-axis) decays ex-
ponentially over the magnetic correlation length ξ, which di-
verges as ξ ∝ 1/

√
H −Hsat upon approaching the bulk sat-

uration field Hsat [11]. The vortex radius then diverges at
the critical point H = Hsat, meaning that the exponential
decay is replaced by an algebraic decay 1/

√
r. [11], which

signals a second order transition into a conical single-Q mag-
netic ordering. Finally, Fig. 2 (d) shows a giant vortex solution
(l = ±2) obtained by removing the spins from the ring of six
sites indicated with black dots. As it can be anticipated from
Eq. (12), such a ring favors values of l which maximize Jl(z)
in the region R− r0/2 < z < R+ r0/2.

Lattice. The continuum theory is only valid in the long
wave-length limit. A similar calculation valid for any wave-
length can be done on the lattice for arbitrary spin S. The
modes for H > HI

sat are obtained by exact diagonalization
of H in the SzT = NS − 1 sector, i.e., in the subspace of
states with a single-spin flip (S → S − 1) relative to the
FP ground state. The flipped spin can be regarded as a sin-
gle particle moving in the central potential generated by the
impurity at the origin. If the impurity consists of a smaller
magnetic moment S′, the flipped spin has a lower energy,
ε1 = J1(S − S′) (J1 < 0) when sitting on the first hexagon
of NN sites around the impurity (potential well) and a higher

3
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FIG. 3. (color online) Binding energy, ∆b, of the l = ±1 bound state
around a non-magnetic impurity inserted in the TL model described
by H. |∆b| is equal to the difference between the saturation field
around the impurity, HI

sat, and the bulk saturation field Hsat. The
lower inset shows the ratio (HI

sat − Hsat)/Hsat as a function of
J3/|J1|. The contour plots correspond to the amplitude of the ground
state wave-function for selected values of J3/|J1|.

energy ε3 = J3(S − S′) (potential barrier) when sitting on
the six third-NNs. The hopping amplitude between a pair of
sites j and l away from the origin is JjlS, while the hopping
between the impurity and a different site l is J0l

√
SS′. It is

then clear that the total spin S is an overall scaling factor for
the effective single-particle Hamiltonian. In other words, the
normal modes depend only on the ratio α = S′/S, implying
that for the case of a non-magnetic impurity (S′ = 0) the nor-
mal modes are exactly the same all the way from S = 1/2 to
the classical limit S →∞.

The ground state of the single spin-flip for H plus a non-
magnetic impurity at the origin (S′ = 0) is doubly degenerate
with quasi-angular momenta l = ±1 and binding energy ∆b

(see Fig. 3). This ground space is the precursor of the vortex
state that appears around the impurity right below the field
H = HI

sat, at which the energy of the l = ±1 bound state
becomes equal to the energy of the FP state: HI

sat = Hsat −
∆b. |∆b| reaches its maximum value near J3/J1 ' −0.6
and decreases upon approaching the other incommensurate-
commensurate transition (J3/J1 →∞), as expected from the
potential well disappearance (ε1 → 0) for J1 → 0. [12] The
inset of Fig. 3 shows that the window of magnetic field values
where the non-magnetic impurity is expected to bind a vortex
is a sizable fraction of Hsat for J3 . J1.

While we have used a particular HamiltonianH for describ-
ing the creation of magnetic vortices by non-magnetic impu-
rities above Hsat, our conclusion is valid for a larger family
of frustrated Hamiltonians exhibiting Lifshitz transitions. The
FM interaction, represented by J1 in our model, is necessary
to haveHI

sat > Hsat, i.e., to have a bound state around the im-
purity. We note, however, that other types of impurities, such
as a strain-induced local enhancement of the exchange inter-
actions, can also produce a local saturation field HI

sat > Hsat

in frustrated magnets with spiral ordering induced by two or
more competing AFM interactions, such as Ba3Mn2O [13–
17]. Moreover, the underlying lattice does not need be C6

invariant. Our continuum theory analysis indicates that vortex
states should also appear in tetragonal systems. This is con-
firmed by an explicit calculation for non-magnetic impurity
inserted on a J1-J3 square lattice model [11].

NiGa2S4 is a possible realization of H with −J1/J3 =
0.2(1). [18] Unfortunately this small ratio produces an ex-
tremely narrow field window above Hsat for observing the
vortex-impurity bound state. NiBr2 provides an alternative
realization ofH with−J3/J1 = 0.26. [19] Non-magnetic im-
purities can be introduced by replacing Ni with Zn. [20] We
predict that ZnxNi1−xBr2 should exhibit magnetic vortices
bounded to the Zn-impurities right above Hsat. CeRhAl4Si2
and CeIrAl4Si are alternative examples of tetragonal frus-
trated magnets with competing FM and AFM interactions,
which exhibit incommensurate intra-layer magnetic ordering
at zero field and low enough temperature. [21, 22] Non-
magnetic impurities should also nucleate magnetic vortices
above the saturation field of these materials.

Finally, the NN FM exchange also leads to the forma-
tion of two-magnon bound states above Hsat [23–25], im-
plying that the bulk saturation field is in general higher than
the value associated with a single-magnon condensation [see
Eq. (2)]. The attractive magnon-magnon interaction can pro-
duce a continuous transition into some form of multipolar or-
dering (e.g., nematic ordering for the condensation of magnon
pairs) [26–31] or a discontinuous transition. In any case, the
magnon-magnon interaction is of order one, while the attrac-
tive interaction between the magnon and a non-magnetic im-
purity is proportional to S, implying that HI

sat remains higher
than Hsat for large enough S. Another factor that makes
the magnon-impurity binding energy larger than the magnon-
magon binding energy is the static nature of the impurity: the
reduced mass for the two-magnon problem is half of the single
magnon mass relevant for the magnon-impurity problem.

We thank Y. Kamiya, I. R. Fisher, H. Zhou, A. T. Hrsitov,
and E. D. Bauer for useful discussions. Computer resources
for numerical calculations were supported by the Institutional
Computing Program at LANL. This work was carried out un-
der the auspices of the NNSA of the US DOE at LANL under
Contract No. DE-AC52-06NA25396, and was supported by
the US Department of Energy, Office of Basic Energy Sci-
ences, Division of Materials Sciences and Engineering.

[1] A. A. Belavin and A. M. Polyakov, Sov. Phys. JETP 22, 245
(1975).

[2] A. Bogdanov and A. Hubert, Journal of Magnetism and Mag-
netic Materials 138, 255 (1994), ISSN 0304-8853.

[3] S.-Z. Lin, C. D. Batista, and A. Saxena, Phys. Rev. B 89,
024415 (2014).

[4] A. O. Leonov and M. Mostovoy, Nat Commun 6 (2015).
[5] S.-Z. Lin and S. Hayami, Phys. Rev. B 93, 064430 (2016).

4



[6] V. Zapf, M. Jaime, and C. D. Batista, Rev. Mod. Phys. 86, 563
(2014).

[7] A. Wollny, L. Fritz, and M. Vojta, Phys. Rev. Lett. 107, 137204
(2011).

[8] A. Sen, K. Damle, and R. Moessner, Phys. Rev. B 86, 205134
(2012).

[9] V. S. Maryasin and M. E. Zhitomirsky, Phys. Rev. Lett. 111,
247201 (2013).

[10] V. S. Maryasin and M. E. Zhitomirsky, J. Phys.: Conf. Ser. 592,
012112 (2015).

[11] See supplemental material.
[12] Note1, excited bound states with l = ±2 appear in addition to

the l = ±1 ground state for J3 & −J1 (not shown in Fig. 3).
[13] E. C. Samulon, Y.-J. Jo, P. Sengupta, C. D. Batista, M. Jaime,

L. Balicas, and I. R. Fisher, Phys. Rev. B 77, 214441 (2008).
[14] M. B. Stone, M. D. Lumsden, Y. Qiu, E. C. Samulon, C. D.

Batista, and I. R. Fisher, Phys. Rev. B 77, 134406 (2008).
[15] M. B. Stone, M. D. Lumsden, S. Chang, E. C. Samulon, C. D.

Batista, and I. R. Fisher, Phys. Rev. Lett. 100, 237201 (2008).
[16] E. C. Samulon, K. A. Al-Hassanieh, Y.-J. Jo, M. C. Shapiro,

L. Balicas, C. D. Batista, and I. R. Fisher, Phys. Rev. B 81,
104421 (2010).

[17] Y. Kamiya and C. D. Batista, Phys. Rev. X 4, 011023 (2014).
[18] S. Nakatsuji, Y. Nambu, H. Tonomura, O. Sakai, S. Jonas,

C. Broholm, H. Tsunetsugu, Y. Qiu, and Y. Maeno, Science
309, 1697 (2005).

[19] Rgnault, L.P., Rossat-Mignod, J., Adam, A., Billerey, D., and
Terrier, C., J. Phys. France 43, 1283 (1982).

[20] P. Day, M. W. Moore, C. Wilkinson, and K. R. A. Ziebeck,
Journal of Physics C: Solid State Physics 14, 3423 (1981).

[21] N. J. Ghimire, F. Ronning, D. J. Williams, B. L. Scott, Y. Luo,
J. D. Thompson, and E. D. Bauer, Journal of Physics: Con-
densed Matter 27, 025601 (2015).

[22] J. Gunasekera, L. Harriger, A. Dahal, A. Maurya, T. Heit-
mann, S. Disseler, A. Thamizhavel, S. Dhar, and D. K. Singh,
arXiv:1509.02092.

[23] A. V. Chubukov and D. V. Khveschenko, Journal of Physics C:
Solid State Physics 20, L505 (1987).

[24] A. V. Chubukov, Phys. Rev. B 44, 4693 (1991).
[25] N. Shannon, T. Momoi, and P. Sindzingre, Phys. Rev. Lett. 96,

027213 (2006).
[26] F. Heidrich-Meisner, A. Honecker, and T. Vekua, Phys. Rev. B

74, 020403 (2006).
[27] T. Vekua, A. Honecker, H.-J. Mikeska, and F. Heidrich-

Meisner, Phys. Rev. B 76, 174420 (2007).
[28] L. Kecke, T. Momoi, and A. Furusaki, Phys. Rev. B 76, 060407

(2007).
[29] T. Hikihara, L. Kecke, T. Momoi, and A. Furusaki, Phys. Rev.

B 78, 144404 (2008).
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