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Abstract

Kinks near the Fermi level observed in angle-resolved photoemission spectroscopy (ARPES)

have been widely accepted to represent electronic coupling to collective excitations, but kinks at

higher energies have eluded a unified description. We identify the mechanism leading to such kink

features by means of ARPES and tight-binding band calculations on σ bands of graphene, where

anomalous kinks at energies as high as ∼4 eV were reported recently [Phys. Rev. Lett. 111, 216806

(2013)]. We found that two σ bands show a strong intensity modulation with abruptly vanishing

intensity near the kink features, which is due to sublattice interference. The interference induced

local singularity in the matrix element is a critical factor that gives rise to apparent kink features,

as confirmed by our spectral simulations without involving any coupling to collective excitations.

PACS numbers: 73.22.Pr, 73.20.At, 79.60.-i
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Angle-resolved photoemission spectroscopy (ARPES) is an essential technique that can

directly measure the electronic band structure of solids [1]. It is also useful in the study of

electronic coupling to collective excitations, such as phonons and magnons, which appears

as an abrupt change in the slope of band dispersion, termed “kink structure” [2–8]. So far,

the low-energy kink structure observed in ARPES has been widely accepted to represent

coupling to collective excitations, providing important information on their energy scale and

coupling strength. However, kinks that appear at energies much higher than excitations

have remained controversial, and their mechanism was hotly debated in terms of manybody

interactions and spectral modulations [9–16].

The kink structure is also a central issue in the study of graphene [17–20]. Graphene has

simple lattice and electronic structures, and its energy scale of phonons is relatively high

[21–25], making it ideal for investigating the kink phenomenology of a two-dimensional solid.

Indeed, ARPES spectra of graphene π bands show pronounced kinks in the energy scale of

140–150 meV from the Fermi energy (E F) [17–20], which is typical of optical phonons in

graphene [21].

Recently, Mazzola et al. have reported that ARPES spectra of graphene σ bands, having

binding energies greater than 3.5 eV, show the similar kink features [26]. This is rather

surprising, given that ARPES kinks typically occur within few hundred millielectronvolts

from E F and are therefore not expected at such a high binding energy. The observed kinks

were attributed to electron-phonon coupling, where an abrupt drop in the density of states

at the low-energy edge of σ bands is assumed to substitute for the role of the Fermi cutoff

at E F [26]. However, the estimated electron-phonon coupling strength is ∼1.0, which is an

order of magnitude greater than in theoretical predictions for doped π bands [21–25].

In this Letter, we identify the mechanism of high-energy kinks in graphene σ bands by

means of ARPES and tight-binding band calculations. We find that two σ bands show

unexpectedly strong intensity modulations and abruptly vanishing intensity near the kink

features. Such characteristic intensity patterns are found due to quantum interference of

wavefunctions coming from two sublattices within the honeycomb lattice of graphene. The

interference induced local singularity in the matrix element is identified as a key factor that

leads to apparent kink features, as confirmed by our spectral simulations without involving

any coupling to collective excitations. This mechanism, which is demonstrated for graphene

as a simple model system, may be extended to those observed in various other materials sys-
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FIG. 1: (color online). (a) Valence band structure of graphene along kΓM and kΓK directions,

obtained from the tight-binding band calculations [30]. The shaded area represents projected

substrate bands [31]. (b) 3D representation of two σ bands for the boxed area in (a). The inset

shows the Brillouin zone. Experimental ARPES spectra of σ bands, taken at 15 K along (c) kΓK

and (d) kΓM directions. Black curves overlaid are a fit with calculated dispersions based on the

tight-binding model. The high-energy kink features are indicated by arrows.

tems, where the similar intensity suppression near high-energy kink features was commonly

observed [9–16].

ARPES experiments were performed at Beamline 4.0.3 in the Advanced Light Source,

equipped with a R8000 analyzer (VG-Scienta, Sweden). Energy and momentum (k) resolu-

tions were better than 20 meV and 0.01 Å−1. The photon energy of 30–45 eV was chosen to

have a good cross-section of graphene σ bands. Our sample is quasi-freestanding graphene

fabricated on the surface of hydrogen-terminated 6H-SiC(0001) wafers with a dopant con-

centration of 1 × 1018 cm−3. The graphene layer was grown ex-situ by thermal graphitization

of SiC(0001) in a flow of argon [27], followed by annealing at 850◦C in a flow of hydrogen, as

described in [28, 29]. The samples were then transferred to the ultrahigh vacuum chamber

with base pressure of 5 × 10−11 torr, and briefly annealed up to 500◦C before ARPES mea-

surements. For graphene on bufferlayer samples, we obtained essentially the same results in

terms of σ-band kinks, which is consistent with previous results [26].
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Figure 1(a) shows a wide scale valence band structure of graphene, calculated by the

tight binding model [30], along ΓK and ΓM directions [Brillouin zone in Fig. 1(b)]. Near

E F, the well known π band of pz orbitals (gray line) is linearly dispersing around the K

point [17]. At binding energies greater than 3.5 eV, there are two parabolic σ bands (green

and brown lines), coming from two of three bonding states of in-plane sp2 orbitals. Near

their vertex [the boxed region in Fig. 1(a)], inner and outer σ bands are closely spaced with

nearly isotropic energy contours and degenerate at the Γ point, as illustrated in Fig. 1(b).

An important deviation from this simple tight-binding picture is observed in ARPES

spectra taken for the corresponding k region [Figs. 1(c) and 1(d)]. Consistent with the

previous report [26], there are apparent kink features, as indicated by arrows. Near these

features, the spectral intensity is not uniform but strongly suppressed in |k| < 0.1 Å−1.

Because of this suppression, it is difficult to directly quantify the kink energy (Ekink), defined

by the energy scale of kinks with respect to the top of σ bands [26]. We have optimized

tight-binding parameters to reproduce the observed dispersions in |k| ≥ 0.1 Å−1, as shown

by black curves overlaid in Figs. 1(c) and 1(d). The best fit yields Ekink ∼ 230 meV, which

is similar to but clearly greater than the typical energy scale of optical phonons in graphene

[17, 18, 21]. Furthermore, we found only the outer branch (σouter) of two σ bands is visible

along kΓK [Fig. 1(c)], whereas only the other inner branch (σinner) is visible along kΓM [Fig.

1(d)]. This is at variance with Fig. 1 of the previous report [26], where only the σouter is visible

in both kΓK and kΓM directions. The kink features with strong intensity modulations were

consistently observed with the photon energy of 30–45 eV [32] and on different substrates

[26]. This rules out possible effects of final-state conditions as well as coupling to substrate

bands [shaded area in Fig. 1(a)] [33].

The intensity modulation can more clearly be identified in a series of constant-energy

maps in Fig. 2. From tight-binding band calculations, one would expect two nearly circular

contours of σouter and σinner bands, as shown in Figs. 2(a)–2(c). Corresponding ARPES

spectra are, however, strongly modulated to have a characteristic intensity pattern with

sixfold symmetry [Figs. 2(d)–2(f)]. Comparing to tight-binding band contours (black lines

overlaid), we found that σouter and σinner bands have sixfold modulations with angle ϕ,

respectively, which are alternating with each other. This out-of-phase relation of σouter and

σinner bands is consistent with observed band dispersions in Figs. 1(c) and 1(d). Such a

strong intensity modulation provides an important clue to understanding the origin of kink
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FIG. 2: (color online). (a)–(c) Constant-energy contours of tight-binding band calculations at

binding energies marked at the bottom right. (d)–(f) Experimental ARPES intensity maps taken

at corresponding binding energies with the photon energy of 36 eV. (g)–(i) Simulated ARPES

intensity maps based on sublattice interference shown in Fig. 3. Overlaid lines are part of constant-

energy contours shown in (a)–(c). The maximum intensity points in (d) and (g) slightly deviate

from overlaid black lines due to the kink features.

features, as explained below.

ARPES intensity is subject to a strong modulation by the matrix element M k that

involves the quantum interference of wavefunctions. We have calculated M k of σ bands

based on the Fermi-Golden rule [32] that relates initial-state and final-state wavefunctions

as,

M k = 〈ψk
f | Hint | ψk

i 〉 =
∑
n,l

Ak
lC

k
l,ne

−ik·τnFl(k) (1)

where Ak
l is the photoionization cross-section of orbital l with incident photons, Ck

l,n is the

coefficient of eigenvectors with momentum k and sublattice n, Fl(k) is the Slater’s orbital

in k -space [34], τn is the distance of atomic basis in the form of plane waves [35]. The final

state is approximated by a free electron based on the weak dependence of kink features on

the photon energy [32]. This formula, which is also used to explain the spectral modulation

in π bands of graphene and graphite [35–39], concerns the interference of photoelectrons

coming from A and B sublattices of the honeycomb lattice (like two-source interference)
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FIG. 3: (color online). The calculated interference-induced intensity maps for s and p orbitals of

σinner and σouter bands, respectively, as marked at the top and the left. These maps are calculated

based on the phase interference of initial-state wavefunctions coming from the two sublattices of

graphene, as described in the text.

[36]. Here, we limit our analysis to the intrinsic phase interference of initial-state wavefunc-

tions, and should be distinguished from final-state effects [38]. The details on initial-state

wavefunctions, such as orbital amplitudes of A and B sublattices and their phase difference,

are obtained from tight-binding calculations, as summarized in [32].

In Fig. 3, we display k distribution maps of sublattice interference calculated from the

above formula for the s and p orbitals of σinner and σouter bands, respectively. The s orbital

of σinner bands has the phase difference π along kΓK [32], leading to destructive interference

and resultant intensity pattern in the form of sin2(6ϕ/2), as shown in Fig. 3(a). On the other

hand, the phase difference along kΓK is 0 for the s orbital of σouter bands, but their orbital

amplitude vanishes along kΓM [32]. The effect of constructive interference along kΓK and

amplitude suppression along kΓM results in the intensity pattern in the form of cos2(6ϕ/2),

as shown in Fig. 3(b). The two sixfold intensity patterns of σinner and σouter bands, which

are out of phase to each other [Figs. 3(a) and 3(b)], naturally explain our observations in

Figs. 2(d)–2(f).

As for the p orbitals, the interference patterns of σinner and σouter bands commonly show

much less anisotropy [Figs. 3(c) and 3(d)], as compared to those of s orbitals, suggesting
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FIG. 4: (color online). (a) Matrix element as a function of k obtained by curve fitting to ARPES

data in Fig. 1(c). The red line overlaid is used for model simulations in (c). (b) Matrix elements in

the form of 1–|1–k/k0|α, where k0 = 0.23 Å−1. (c)–(f) A series of spectral simulations using matrix

elements shown in (a) and (b) and marked at the bottom right.

that As is dominant over Ap in the photon energy of 30–45 eV. The ratio of As to Ap is also

related to the linear polarization of photons and the scattering geometry in our experiments

[40].

We have performed a simple spectral simulation with the standard Lorentzian formula

[41] as

I(k, E) ∝ ImΣ(E)

(E − EB(k))2 + ImΣ(E)2
·
∣∣M k

∣∣2 (2)

where E B is the band dispersion obtained from the tight-binding calculations for σ bands,

and ImΣ(E) is the k independent imaginary part of self-energy. M k is given by the above

interference patterns, and As is reasonably assumed by reproducing experimental matrix

elements [red curve in Fig. 4(a)]. ImΣ(E) is set by 50 meV at E F, from which it monotoni-

cally increases with binding energy. This is to take into account finite broadening and the

effect of electron correlation. On the other hand, electronic coupling to collective excitations

is manifested by a step-like increase in ImΣ(E) at the energy scale of involved excitations

[3–5], and is therefore not included in our simulations.
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The resulting simulations are present in Figs. 2(g)–2(i) and Fig. 4(c), which successfully

reproduce key aspects of our ARPES data, characteristic sixfold intensity patterns [Figs.

2(d)–2(f)] as well as strong intensity suprression near the Γ point [Fig. 1(c)]. More im-

portantly, the kink features clearly appear in the simulated dispersion [Fig. 4(c)] without

including the electron-phonon interaction [26]. This supports that the observed kink features

are related to interference-induced intensity modulations rather than an intrinsic feature of

the self-energy.

The strong intensity modulations in a narrow k region may lead to a kink feature, which

has been debated in the study of high-energy kinks [9–16]. However, little is known about

the origin of strong intensity modulations and really how such modulations result in a kink

feature. In general, the matrix element M k is a smoothly varying function within a single

band. But in the presence of the sublattice (pseudospin) degree of freedom, the effect of

phase interference may produce strong k dependence and resultant singular points in M k.

The abrupt variation of spectral intensity near a singular point makes k distribution curves

slightly asymmetric. This causes a discrepancy in peak positions of energy and k distribution

curves, leading to apparent kink features whose energy scale is simply set by the singular

point and thus can be as high as few electronvolts.

This novel mechanism can be demonstrated by our simple but instructive model simula-

tions shown in Figs. 4(d)–4(f). M k is assumed to be a form of 1–|1–k/k0|α, where k0 is the

peak position and its curvature is parameterized by exponent α, as shown in Fig. 4(b). This

is a minimal mathematical form of the red curve in Fig. 4(a) with the exponent α effectively

controlling the degree of singularity at the k0 point. The kink feature clearly appears for

α = 1.0 [Fig. 4(d)], which is in good agreement with Fig. 4(c). However, it becomes less

pronounced for α = 1.5 [Fig. 4(e)], and completely disappears at α = 2.0 [Fig. 4(f)], where

the singular point is absent in M k [Fig. 4(b)]. Therefore, the formation of interference in-

duced local singularity in M k is a key factor that gives rise to the high-energy kink features

in the σ bands of graphene. Our results establish the importance of the local singularity as

a missing link between strong spectral modulations and high-energy kink features.

Our mechanism, which is demonstrated on graphene as a simple model system, works

generally in the presence of a local singularity in M k. Normally, M k is a smoothly varying

function within a single band, but a local singular point may be formed if there is strong

phase interference. In fact, our explanation can also be extended to high-energy kinks or
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waterfall dispersions observed in various transition-metal oxides, where the similar suppres-

sion of spectral intensity near the kink features was commonly observed [9–16]. Thus, the

message of this work should be carefully considered in ARPES investigations to avoid any

erroneous analysis.

It would also be interesting to discuss the effect of sublattice symmetry breaking on

interference patterns. We found that the characteristic modulation of σinner bands [Fig. 3(a)]

becomes progressively less anisotropic, as we increase the symmetry-breaking potential [32].

Our work thus suggests that strongly modulated intensity patterns measured by ARPES

can be used to extract important physical information, such as quantum phases, (hidden)

sublattices, and symmetry breaking.
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