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Charge carrier localization in extended atomic systems has been described previously as being
driven by disorder, point defects or distortions of the ionic lattice. Here we show for the first time
by means of first-principles computations that charge carriers can spontaneously localize due to a
purely electronic effect in otherwise perfectly ordered structures. Optimally-tuned range-separated
density functional theory and many-body perturbation calculations within the GW approximation
reveal that in trans-polyacetylene and polythiophene the hole density localizes on a length scale
of several nanometers. This is due to exchange-induced translational symmetry breaking of the
charge density. Ionization potentials, optical absorption peaks, excitonic binding energies and the
optimally-tuned range parameter itself all become independent of polymer length as it exceeds the
critical localization scale. Moreover, we find that lattice disorder and the formation of a polaron
result from the charge localization in contrast to the traditional view that lattice distortions precede
charge localization. Our results can explain experimental findings that polarons in conjugated
polymers form instantaneously after exposure to ultrafast light pulses.

Spatial localization in extended systems has been a
central topic in physics, since the pioneering work of An-
derson [1] and Mott [2], and more recently in the con-
text of many-body localization [3]. It also forms an im-
portant theme in the materials science of extended con-
jugated systems where the dynamics of charges carrier
are described in terms of localized polarons. [4–10]. One
way to identify charge localization is through the depen-
dence of its energy (e.g., ionization potential or electron
affinity) on the system size L. In 1D systems, if the
charge remains delocalized, then according to a simple
non-interacting picture, its energy converges to the bulk
limit as 1/Lα with α = 1 for a metal or α = 2 otherwise.
However if charge localizes within a critical length scale
lc, the energy will become independent of L for L > lc.

Charge localization in conjugated systems can occur
in several ways: Attachment by point defects [9], lat-
tice disorder effects [5, 10], and formation of self-bound
charged polarons and neutral solitons by local distortion
of the nuclear lattice [11–14]. However, it still remains an
open question whether localization can occur in disorder-
free transitionally invariant systems. This question has
received much attention recently in the context of many-
body localization [15–18].

In this letter we provide evidence from first-principles
computations for a new mechanism of localization in 1D
conjugated systems, in which the electrons form their
own nucleation center without the need to introduce dis-
order into the Hamiltonian. This challenges the widely
accepted picture in which the electronic eigenstates local-
ize only after coupling with the lattice distortion [19]. To
illustrate this mechanism, we study the electronic struc-

ture and the charge distribution in large one-dimensional
systems with ideal geometries (ordered structures). We
focus on two representative conjugated polymers, trans-
polyacetylene (tPA) and polythiophene (PT), with in-
creasing lengths L = Mℓ1 up to M = 70 and M = 20,
respectively (ℓ1 is the length of the repeat unit). Besides
their practical significance [6], tPA and PT also exhibit
interesting physical phenomena, in which polarons, bipo-
larons and solitons affect charge mobility and localiza-
tion [4, 12, 20–22].

In Fig. 1 we plot the ionization potentials (IPs) for
both tPA (panel a) and PT (panel b) polymers taken as
a negative of the highest occupied eigentsate energy of the
neutral system -εH as a function of the number of repeat
units, M . To illustrate the effect of localization we fo-
cus on the ionization potential, representing the energy of
positive charge carrier (hole), rather than on the electron
affinity, representing the energy of the negative charge
carrier (electron), since we find the former to localize on
shorter length scales (see below). Several levels of theory
are used: Hartree-Fock (HF) theory, density functional
theory (DFT) within the local density approximation
(LDA) [31], the optimally-tuned BNL* [32–34] range-
separated hybrid functional [35], and the B3LYP [36] ap-
proximation, and, finally, the G0W0 many-body pertur-
bation technique [37] within the stochastic formulation
(sGW) [38]. The LDA and to some extent the B3LYP
approximation lack sufficient exact exchange, while HF
lacks correlations and screening effects. BNL* provides a
systematic description of correlations and exact exchange
through the process of optimal tuning [39]. G0W0 is
based on many-body perturbation theory and includes
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Figure 1. Ionization potentials (estimated using highest oc-
cupied eigen-energies εH) for (a) trans-polyacetylene and (b)
polythiophene shown against the inverse number of repeat
units M in the respective polymer. The repeat unit for each
polymer is illustrated in the corresponding insets (C, H and S
are shown by black, white and yellow spheres, respectively).
Results obtained from different computational approaches are
indicated by colors and labelled in the figure. Experimental
data for the ionization potentials (gray circles) were taken
from Refs. 23–25 and references therein. The dashed lines
represent a numerical fit to −εH (M) = −εH (∞) + ∆ε

M
for

LDA and B3LYP (εH (∞) and ∆ε are fitting parameters)

and to −εH (M) = −εH (∞) + ∆ε exp
(

−
√

M/M0

)

for HF,

BNL*, and GW. The parameters of the fit are provided in the
Supplementary material.

exchange, correlation and screening effects and is widely
acknowledged as a technique going beyond the mean-field
approaches [40].

Functional Polymer ℓc/nm −εH (∞)/eV σ∞/nm

HF
tPA 4.9 6.12 0.8
PT 3.1 6.41 0.9

BNL*
tPA 7.9 5.87 2.3
PT 4.3 6.69 1.4

GW PT 4.2 6.4 -

Table I. The the critical length lc and the asymptotic values
of the ionization potential −ε(∞) and the second moment σ∞

of the hole density distribution as predicted by HF, BNL* and
GW for tPA and PT chains.

The LDA and B3LYP computations yield IPs that
are considerably smaller than the experimental values
(Fig. 1), consistent with previous computational stud-
ies on shorter polymer chains [41, 42] and with general
theoretical arguments [43, 44]. These IP values approach
their bulk limit asymptotically linearly as M−1 [45] for
the range of sizes studied and they do not fit the purely
non-interacting asymptotic dependence of M−2. By con-
trast, HF IPs are significantly closer to the experimental
values, deviating by less than 0.4 eV. The HF IPs also
initially drop as polymer size increases, but for a poly-
mer of length exceeding a critical length lc they quickly
converge to an asymptotic value −εH(∞), indicating lo-
calization of the hole. This is documented in Table I and
the related discussion in the Supplementary material (cf.
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Figure 2. (a) Calculated optical spectra for selected tPA poly-
mers of various lengths (numbers of repeat units M). All
calculations were performed with the cc-pvTZ basis set using
TDDFT within the BNL* functional (solid black line with red
fill) and LDA functional (green filled curve). The fundamental
band gaps are shown by dashed vertical lines in correspond-
ing colors. Red arrows indicate experimental absorption peak
positions (Refs. 26–29 and references therein). (b) Position
of the first maxima of the absorption Eopt and the fundamen-
tal band gap Eg obtained with BNL* and LDA functionals as
function of inverse number of repeat units. Results for the two
longest polymers were calculated using the 3-21G basis set,
other results are obtained using cc-pvTZ. The exciton binding
energy is the difference between Eg and the peak maximum
is illustrated by an arrow. The horizontal full line represents
the experimental energy of the maximum absorption for the
infinite system (1.9 eV) [30].

Fig. 1 ibid.), in which the derivative of −εH with respect
to the system size is analyzed. The computed IPs using
BNL* and sGW are in even better agreement with the
available experimental data than those of HF (Fig. 1).
They also show a localization transition for tPA chains
longer than 7.9 nm and PT polymers longer than 4.3 nm
(details of this estimate are provided in the Supplemen-
tary material). Using the results for polymers of interme-
diate size (which do not exhibit localization yet) we can
linearly extrapolate to the limit M → ∞ and estimate
the value of ionization potential if no localization occurs;
this yields IP values smaller by ≈ 0.5 eV which can be
viewed as the energy of spontaneous localization. While
the asymptotic values of the ionization potentials pre-
dicted by HF, BNL* and sGW are similar, the BNL* and
sGW critical length scales ℓc are larger than those pre-
dicted by HF. This result is consistent with the tendency
of HF to over-localize holes in finite systems [46, 47].
To further strengthen the validity of the BNL* treat-

ment (and indirectly the G0W0 which agrees with the
BNL*), in Fig. 2 we compare its predicted optical exci-
tations Eopt and fundamental gaps Eg = εL− εH (where
εL is the energy of the lowest unoccupied eigenstate of
the neutral system) in tPA to experimental results, where
available [26–29] (see Table II of the Supplementary ma-
terial). The absorption spectra shown in the left panel of
Fig. 2 were calculated using (adiabatic) time-dependent
DFT [33, 48, 49]. It is seen that the BNL* approach
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Figure 3. Left panels: The hole densities (top two panels), ∆n (r), for the corresponding labelled methods in long strands
of M = 50 repeat tPA units (left) and M = 20 repeat PT units (right). The hole is shown as a yellow (aqua) 0.00025a−3

0

(-0.00025a−3

0
) density isosurface. In the two bottom left panels we plot the cumulative density, ρ (z), for different functionals.

The cumulative curve for a tPA polymer with M = 40 (black line) is practically indistinguishable from M = 50 though their
length differs by 2.5 nm . Gray areas in the plots show the value of the second cumulant (σ) for the corresponding BNL* hole
density, which are plotted in the right panel for different polymer lengths. The dashed straight line in the right panel is the
fully delocalized result (σ = L/

√
12). Note that for the larger system we used a smaller basis (3-21G, black symbols) which

closely follows the results using a larger basis (cc-pvTZ, red symbols).

provides excellent agreement for optical gaps EBNL∗

opt in
comparison with experimental data. This is also illus-
trated in the right panel of Fig. 2, where the optical gaps
Eopt are plotted as a function of 1/M and for the largest
system studied our results yield the value of the experi-
mental optical gap of the infinite system [30, 50]. In the
right panel of Fig. 2 we also plot the fundamental gap
EBNL∗

g . The values of EBNL∗

g for small systems are in ex-
cellent agreement with previous G0W0 results [25]. Fur-
thermore, EBNL∗

g does not localize for the tPA lengths

studied. Since, εBNL∗

H localizes within a length scale of
7.9 nm the persistent change in EBNL∗

g for larger poly-
mers must result from a continued change in the eigenen-
ergy εBNL∗

L . This suggests that added negative charge
does not yet localize for the tPA sizes studied and this
may explain why the finite size gaps are larger than the
G0W0 gap of 2.1 eV for L → ∞[20, 51, 52]. Note, how-
ever, that the G0W0 gaps are rather sensitive to the size
of the unit cell and small changes of 0.005 nm in the po-
sition of the atoms can lead to significant fluctuation of
2.0 to 4.2 eV in the gaps [53]. Since there are no ex-
perimental measurements of the fundamental gap when
L → ∞, it still remains an open question as to the length
scale at which electrons localize (as opposed to hole lo-
calization, which already occurs at the system sizes stud-
ied). To reach system sizes at which the electron local-
izes will probably require use of stochastic approach for
BNL* [54]. Finally, panel b of Fig. 2 shows that the exci-
ton binding energy Eb = Eg−Eopt is on the order of Eg/2
for the larger systems, a value typical of other 1D con-
jugated systems [55], indicating that neutral excitations
are dominated by electron-hole interactions.

Up to now we have studied localization only from the
point of view of energy changes. It is instructive to also
study localization in terms of the hole density, which is
the difference ∆n (r) = nN (r) − nN−1 (r) between the

ground state density of the neutral (N) and the posi-
tively charged (N −1) systems. For non-interacting elec-
trons this quantity equals the density of the highest oc-
cupied eigenstate, which is not localized. For interact-
ing electrons, however, ∆n (r) must be calculated as the
difference of densities obtained from two separate self-
consistent field DFT calculations and can thus exhibit
a different behavior. We have also ascertained that the
same localization pattern emerges even when an infinites-
imal charge q → 0 is removed, showing that localization
of the hole density occurs in the linear response regime.

Isosurface plots of the hole densities ∆n are given in
the upper left and middle panels of Fig. 3 for the var-
ious methods (excluding sGW). In the lower left and
middle panels we show the cumulative hole densities
ρ (z) =

∫ z

−∞
dz′

∫

∞

−∞
dy′

∫

∞

−∞
dx′∆n (r′). In both types

of representations it is evident that LDA and B3LYP
do not show localization of the hole density in any of
the systems studied and in ρ (z) they show linear mono-
tonic increase. By contrast, the HF and BNL* charge
distributions localize as observed by change of ρ (z) near
the center of the chain. In PT this transition in ρ (z)
occurs around one of the S atoms closest to the center
of the polymer, due to the lack of mirror plane symme-
try. For polymers with L > ℓc, the BNL* hole density
hardly changes; this is illustrated by the overlapping ρ (z)
of polymers with two distinct length that differ by 25%
from each other (M=40 and M-50). This implies that
the size of the hole is no longer influenced by the poly-
mer terminal points and is thus independent of system
size.

The extent of hole localization can be described by

the second cumulant σ =
√

∫

∆n (r′) (z′ − z̄)
2
dr′ (where

z̄ =
∫

∆n (r′) z′dr′). This is shown in the right panel of

Fig. 3 for BNL*. For small sizes, σ increases as L/
√
12,
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consistent with a uniform hole density spread over the
entire polymer. As L increases beyond ℓc, BNL* σ con-
verge to an asymptotic value, σ∞ (Table I), while those
of LDA continue to follow the linear L/

√
12 law (not

shown).

It is important to note that the hole density ∆n (r)
is dominated by the minority-spin density changes: the
orbitals having the same spin as the removed electron
redistribute such as to localize the hole density near the
chain center. On the other hand, the majority-spin or-
bitals remain nearly unperturbed and thus do not con-
tribute to ∆n (r). This fact reveals that localization is
driven by attractive non-local exchange interactions, ex-
isting solely between like-spin electrons and the attrac-
tive interactions stabilizes the localized hole by ≈ 0.5 eV.
This notion is further supported by the fact that localiza-
tion only appears in methods that account for non-local
exchange (HF, BNL*, and G0W0).

One of the interesting ramifications of the IP stabiliza-
tion for polymer length L > lc is the simultaneous stabi-
lization of the BNL* range-separation parameter γ. This
is because in the absence of hole localization the tuning
criterion,[39] I + εH = 0 is expected to become automat-
ically satisfied when (semi)local functionals are used in
the limit of infinite system size [46, 56–58] forcing γ (and
with it the non-local exchange part of the functional) to
drop eventually to zero. It is only through localization
that we are able to continue tuning and the range param-
eter attains finite asymptotic values of γtPA = 2.7 nm−1

and γPT = 3.1 nm−1. The leveling of γ with L was re-
ported for PT [59], however, it was not previously clear
whether γ would level-off for tPA.
While HF supports partial localization (Fig. 3), its hole

density also exhibits oscillations along the entire polymer
length that do not diminish with system size. These in-
dicate a rigid shift of charge between neighboring atoms:
From double to single C-C bonds in tPA and from S to
nearby C atoms for PT. This is consistent with the ten-
dency of HF to eliminate bond-length alternation in the
entire tPA polymer chain [60]. In order to examine this
effect we have relaxed the structure of charged tPA with
M=50 both for HF and BNL. The HF results confirm the
elimination of the bond length alternation and a contrac-
tion of the central bond due to the charge extraction, as
shown in the left panel of Fig. 4. BNL* on the other hand
eliminates the bond-length alternation only in the prox-
imity of the localized hole density (right panel of Fig. 4),
consistent with a localized polaron model.

In summary, using first principles density functional
theory and many-body perturbation theory, we have
shown that positive charge carriers can localize in 1D
conjugated polymers due to a spontaneous, purely elec-
tronic symmetry breaking transition. In this case, local-
ization is driven by non-local exchange interactions and
thus cannot occur when (semi)local density functional
approximations are used. HF theory, which has non-local
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Figure 4. The C-C bond length in the charged M = 50 tPA
polymer as predicted by HF (left panel) and BNL* (right
panel) obtained with the 3-21G basis set. In BNL*, a polaron
appears in the center of the polymer chain as a reduction of
the bond-length alternation, while in the region about 40 C-C
bonds away from the polaron, the alternation is increased to
0.007 nm, similar to the experimental value of 0.008 nm for
neutral chains [61].

exchange, shows a localization transition in a relatively
small length-scale but predicts complete annihilation of
bond-length alternation upon ionization, irrespective of
polymer length. BNL*, which through tuning includes
a balanced account of local and non-local exchange ef-
fects, provides an accurate description of the optical gap
in comparison to experiments and shows a localization
transition with a length scale (estimated from the lev-
eling off of the IPs) that agrees well with the sGW ap-
proach. Moreover, BNL* predicts a localized disruption
of the bond-length alternation.

The localization phenomenon is driven by the same-
spin attractive non-local exchange interactions and there-
fore, cannot be explained in terms of classical electro-
statics. There is no reason to assume that the observed
emergence of the localization length ℓc in finite systems
will not readily occur also in infinite systems, where hole
states near the top of the valence band are necessarily
infinitely degenerate.
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