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We propose to increase the fidelity of two-qubit resonator-induced phase gates in circuit QED
by the use of narrowband single-mode squeezing. We show that there exists an optimal squeezing
angle and strength that erases qubit ‘which-path’ information leaking out of the cavity and thereby
minimizes qubit dephasing during these gates. Our analytical results for the gate fidelity are in
excellent agreement with numerical simulations of a cascaded master equation that takes into account
the dynamics of the source of squeezed radiation. With realistic parameters, we find that it is possible
to realize a controlled-phase gate with a gate time of 200 ns and average infidelity of 10−5.
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Taking advantage of pulse shaping techniques [1] and
increasing coherence times [2], single-qubit gate fidelity
exceeding 99% has been demonstrated with supercon-
ducting qubits [3, 4]. Similar fidelities have been re-
ported for two-qubit gates based on frequency tunable
qubits [3]. Tuning the qubit transition frequency is, how-
ever, sometimes undesirable or difficult [2] and, for this
reason, fixed-frequency two-qubit gates are being actively
developed [5–11]. Unfortunately, the fidelity of these all-
microwave gates [12] is still below that required for fault-
tolerant quantum computation [13].

A promising all-microwave gate is the resonator-
induced phase gate [11]. This multi-qubit logical op-
eration is based on the dispersive regime of circuit
QED where the qubits are far detuned from a cavity
mode [14, 15]. As schematically illustrated in Fig. 1,
adiabatically turning on and off an off-resonant drive,
the cavity state evolves from its initial vacuum state by
following a qubit-state-dependent closed loop in phase
space. After this joint qubit-cavity evolution, the cavity
returns to vacuum state and the qubits are left unentan-
gled from the cavity but with an acquired a non-trivial
phase. By adjusting the drive amplitude, frequency, and
duration, an entangling phase gate can be realized [11].
This is analogous to the geometric phase gate already
demonstrated with ion-trap qubits [16] and theoretically
studied in the context of circuit QED, quantum dots in
a cavity, and trapped ions [6, 17–19].

In practice, the gate fidelity is limited by residual
qubit-cavity entanglement and by photon loss. Indeed,
during the adiabatic pulse, photons entangled with the
qubit leave the cavity carrying ‘which-path’ information
about the two-qubit state, in turn causing dephasing.
This can be partially avoided by driving the cavity many
linewidths from its resonance frequency. In this situ-
ation, the cavity is only virtually populated and the
qubit-photon entanglement is small [6, 17–19]. Unfor-
tunately, this also leads to longer gate times, a problem
that can be partially mitigated by using pulse shaping
techniques [11].
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FIG. 1. (color online) Qubit-state-dependent evolution of the
outgoing resonator field in phase space (solid lines) in the ro-
tating frame of the drive. Quantum fluctuations correspond-
ing to a coherent (dashed circles) and squeezed drive (filled
ellipses) are represented at an extremum of the paths. By
adjusting the squeezing angle, quantum fluctuations can help
in erasing which-path information and thereby reduce qubit
dephasing during the joint qubit-field evolution.

Here we propose to use single-mode squeezing to ad-
dress the challenge of implementing resonator-induced
phase gates with a gate error below the fault-tolerance
threshold and with short gate times. We show that an
optimal, and experimentally realistic, choice of squeez-
ing power and angle can dramatically improve the gate
fidelity. The intuition behind this improvement is
schematically illustrated in Fig. 1: enhancing fluctua-
tions in the appropriate quadrature erases the which-
path information while leaving the path area, and hence
the accumulated phases, unchanged. This improvement
in gate fidelity is the converse of the recent realization
that single-mode squeezed light is generally detrimental
to dispersive qubit measurement [20, 21]. Using squeez-
ing powers close to that already experimentally achieved
with superconducting circuits [22], we find average gate
errors that are suppressed by an order of magnitude with
respect to a coherent state input drive. In other words,
we suggest to use quantum-bath engineering to protect
the dynamics of a quantum system, going beyond the
typical use of this approach, which is focussed on creat-
ing or stabilizing certain steady-states [23–25].
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In the dispersive regime where the qubit-cavity fre-
quency detuning ∆ = ωa − ωr is large with respect to
the coupling strength g, the system Hamiltonian in the
presence of a cavity drive takes the form

Ĥ = ωrâ
†â+

ωa

2
σ̂z1 +

ωa

2
σ̂z2 + χ(σ̂z1 + σ̂z2)â†â

+ ε(t)(â†e−iωdt + h.c.).
(1)

In this expression, ωr and ωa are respectively the cav-
ity and qubit frequencies, χ = g2/∆ the dispersive cou-
pling strength, ε the drive amplitude, and ωd the drive
frequency. This description is accurate for intra-cavity
photon number n � ncrit = ∆2/4g2 [15]. Although the
resonator-induced phase gate is tolerant to large varia-
tions in qubit frequencies and coupling strengths [26], to
simplify the discussion we assume the qubits to be iden-
tical.

How the resonator-induced phase gate emerges from
evolution under Eq. (1) can be made clearer by per-
forming the time-dependent polaron-like transformation
D(α̂′) = exp(α̂′â†−α̂′∗â) with α̂′(t) = α(t)−(χ/δr)(σ̂z1+
σ̂z2)α(t) on Ĥ [27, 28]. As shown in the Supplemental
Material [26], this leads to the effective Hamiltonian

Ĥeff = 1
2 [ωa + 2χn̂(t)] (σ̂z1 + σ̂z2)− 2χ2|α|2

δr
σ̂z1σ̂z2,(2)

where we have defined n̂(t) = â†â+ |α(t)|2, with the am-
plitude α(t) satisfying α̇ = −iδrα − iε(t) and the drive-
cavity detuning δr = ωr − ωd. The last term of Eq. (2)
represents the nonlinear, qubit-state-dependent phase in-
duced by the driven cavity. To avoid qubit-field entangle-
ment after the gate, the cavity drive is chosen such that
the field starts and ends in its vacuum state. For sim-
plicity, we consider the drive to have a Gaussian profile
ε(t) = ε0e

−t2/τ2

for times −tg/2 < t < tg/2 with tg = 5τ .
As illustrated in Fig. 2(a), for δr � 1/τ the cavity field
evolves adiabatically and α(t) follows a closed path in
phase space. With the cavity being only virtually pop-
ulated, α(t) returns to the origin after the pulse. The
qubit-state dependent phase acquired during this evolu-
tion is determined by the area in phase-space enclosed by
α(t) and is specified by the pulse amplitude ε0, duration
τ , and detuning δr [29]. By appropriately choosing these
parameters, the evolution under Eq. (2) can correspond
to the two-qubit unitary Uzz = Diag(1, 1, 1,−1).

Another advantage of working with a large detuning δr
is that measurement-induced dephasing γφ of the qubits
is small [15, 30]. On the other hand, the strength of the
qubit-qubit interaction goes down with δr, which in turns
leads to long gate times. As we now show, we solve the
challenge of minimizing γφ and maintaining short gate
times by using an input field that is a displaced squeezed
field rather than a coherent state. The squeezed field
is characterized by the squeeze parameter r(ω) and an-
gle θ, and, in practice, can be produced by a Joseph-
son parametric amplifier (JPA) [22, 31]. The frequency

dependence of the squeeze parameter reflects the finite
bandwidth of the JPA around the drive frequency ωd.

Measurement-induced dephasing is caused by photon
number fluctuations and, following Refs. [15, 30, 32], can
be expressed as

γφ(t) = 2χ2

∫ t

0

〈[n̂(t)− n̄(t)][n̂(t′)− n̄(t′])〉 dt′. (3)

An approximate expression for this rate can be obtained
in the limit of adiabatic evolution of the cavity where
the fast dynamics can be neglected. In this situation,
this rate is given by [26]

γφ(t) ≈ 4χ2κ

δ2
r

×
[
N(ωr) +

|α(t)|2
2

(
e−2r(ωd) cos2 Φ + e2r(ωd) sin2 Φ

)]
,

(4)

where κ is the cavity decay rate and Φ = θ− arg[α(t)] is
the relative angle of squeezing. We have also introduced
N(ωr) = sinh2 r(ωr), the thermal photon population as-
sociated with the squeezed input field. Crucially, this
quantity is evaluated at the cavity frequency. This con-
tribution to γφ can be made negligible by working at a
detuning δr that is larger than the typically small band-
width of current JPAs [22, 31]. Moreover, in the absence
of squeezing (r = 0), the second term of Eq. (4) is the
usual expression for measurement-induced dephasing in
a coherent field [30]. While N(ωr) in the first term is
evaluated at the cavity frequency, the squeeze parame-
ter in the second term is rather evaluated at the drive
frequency ωd. For δr � (1/τ, κ), the cavity field closely
follows α(t) ∼ ε(t)/δr such that Φ ∼ θ at all times. As
a result, choosing the squeeze angle θ = 0 leads to an
exponential reduction with increasing r(ωd) of the de-
phasing rate in the adiabatic limit. It is worth noticing
that since the incoming field is off-resonance from the
resonator, the intra-cavity field and outgoing field are
out-of-phase. The qubit information is encoded in the
amplitude of the intra-cavity field while it is encoded in
the phase for the outgoing field. As a result, the choice
of squeezing angle θ = 0 minimizes shot-noise inside
the resonator while simultaneously erasing which-path-
information in the phase of the outgoing field [26]. This
confirms the intuition presented in Fig. 1 that increasing
the quantum fluctuations in the appropriate quadrature
with respect to the field displacement leads to a reduc-
tion of qubit dephasing. Minimizing photon shot-noise
by number-squeezed radiation was also studied in the
context of cavity spin squeezing in Ref. [33].

While the above argument suggests an exponential de-
crease of the dephasing rate for arbitrarily large squeezing
powers, in practice there exists an optimal r(ωd). In or-
der to understand this, it is useful to consider again the
evolution of the cavity field in phase space. As illustrated
in Fig. 2(a) and (b), for large detunings arg[α(t)] is small
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FIG. 2. (color online) (a) Evolution in phase space of the
cavity field α(t) with δr/2π = 320 MHz, κ/2π = 10 MHz,
τ = 40 ns, and tg = 200 ns. The colored dots represent
the field at three different times and the corresponding lines
represent the angles along which the quantum fluctuations
should be reduced to minimize dephasing. (b) Time evolution
of arg[α]. (c) Normalized dephasing rate evaluated at the
three indicated times vs squeezing power for a fixed squeezing
angle θ = 0 and r(ωr) = 0. The normalization γ0

φ corresponds
to the situation without squeezing, i.e., r = 0.

at all times, and choosing a constant θ ∼ 0 minimizes
the dephasing rate. However, for large r(ωd), the anti-
squeezed quadrature enhances dephasing at short times
where arg[α(t)] fluctuates widely. This leads to an over-
all increase in γφ. Figure 2(c) shows the dependence of
the normalized instantaneous dephasing rate on r(ωd)
with θ = 0 at the three times indicated by the dots on
Fig. 2(a). The existence of an optimal squeezing power
is clearly apparent. The finite bandwidth of the input
squeezed state is another reason for the existence of such
an optimal point. Indeed, for a fixed squeezing band-
width Γ, an increase in the squeezing power at ωd will
also lead to an increase in thermal photons at ωr with
N(ωr) = N(ωd)/[(ω − ωd)2 + Γ2] [34]. This contributes
to qubit dephasing via the first term of Eq. (4).

We now turn to a more quantitative description of the
improvement of gate fidelity that can be obtained from
using squeezing. For this, we first compute the gate er-
ror E = 1−〈ψT |E(|ψ0〉〈ψ0|)|ψT 〉 for the pure initial state
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FIG. 3. (color online) (a) Analytical (solid lines) and numeri-
cal (symbols) gate error rate as a function of squeezing power
for θ = 0 and three detunings δr/2π = 160 MHz (dark blue),
312 MHz (blue) and 640 MHz (red). The corresponding max-
imum drive amplitudes are ε0/2π = 278.5 MHz, 795.8 MHz,
and 2.31 GHz. The gate time is tg = 200 ns, cavity decay
κ/2π = 10 MHz, qubit-cavity coupling g/2π = 160 MHz, and
detuning ∆/2π = 3.2 GHz corresponding to a dispersive cou-
pling of χ/2π = 8 MHz and ncrit. = 100. (b) Analytical (solid
lines) and numerical (symbols) gate error rate as a function
of squeezing angle θ for a fixed squeezing power of 5.7 dB and
detuning δr/2π = 320 MHz.

|ψ0〉 = 1
2 (|00〉 + |01〉 + |10〉 + |11〉) at t = −tg/2. In this

expression, |ψT 〉 = Uzz|ψ0〉 is the desired target state
and E· is the quantum channel representing the system
under evolution with the Hamiltonian of Eq. (1) in ad-
dition to the dephasing in the presence of a displaced
squeezed drive. Following the notation from Ref. [11],
the action of the channel on the qubits’ density matrix
elements takes the form E(|ij〉〈kl|) = eiµij,kl−γij,kl , with
{i, j, k, l} ∈ {0, 1}, and where µij,kl are qubit-state de-
pendent phases and γij,kl represents non-unitary evolu-
tion due to the dephasing rate γφ. In addition to two-
qubit phases, evolution under the Hamiltonian of Eq. (1)
leads to single-qubit z rotations. Since these rotations
can be eliminated by an echo sequence, these are not
considered in the error estimation [11].

A prescription to evaluate µij,kl and γij,kl, and there-
fore the error E, can be found in [26]. This corresponds
to the full lines in Fig. 3(a) that show the error as a
function of squeezing strength for different detunings δr
and fixed θ = 0. The symbols in this figure are obtained
by numerical integration of the cascaded master equation
for the system described by the Hamiltonian Eq. (1) and
driven by a degenerate parametric amplifier acting as a
source of squeezed radiation [26, 35]. The numerical sim-
ulations of the cascaded master equation are carried out
with an open source computational package [36, 37]. We
have fixed τ = 40 ns which corresponds to a gate time
of tg = 200 ns. The drive parameters are chosen such
that the cavity is empty at t = tg/2 and a maximum of
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6 photons are excited in the cavity, which corresponds to
n/ncrit = 0.06. The squeezing spectrum is centred at the
drive frequency. Its linewidth Γ/2π = 32 MHz is cho-
sen to ensure that δr � Γ, which minimizes the thermal
photon population at the cavity frequency. As expected
from the discussion above, the error goes down with in-
creasing detuning. More importantly, the error is reduced
in the presence of a squeezing input field up to a opti-
mal power, beyond which measurement-induced dephas-
ing again contributes to the gate error. As the detuning
decreases, there is greater variation in arg[α], which re-
sults in a reduction of the optimal squeezing power. Fig-
ure 3(b) shows the error as a function of the squeezing
angle and confirms that the optimal choice is θ = 0

Table I presents the average gate fidelity obtained from
numerical simulations with (F Sqz.

avg ) and without (F 0
avg)

squeezing for different detunings δr and cavity linewidth
κ, but fixed gate time tg = 200 ns [26, 38]. The parame-
ters in the table are again chosen to limit the maximum
number of photons in the cavity to ∼ 6. It is important
to emphasize the wide range of values chosen for κ in this
table. Note that in all cases the present approach leads
to an increase in gate fidelity. Moreover, with squeezing
powers close to what has already been realized experi-
mentally [22], an order of magnitude improvement can
be obtained. Working with large detunings, an infidelity
of ∼ 3.5 × 10−5, for example, can be obtained in a cav-
ity with κ/2π = 50 kHz. Notably, this is two orders
of magnitude bellow the fault-tolerance threshold of the
surface code [39]. We also note that this approach can be
combined with the improvement achieved by pulse shap-
ing [11]. Finally, we note that our scheme is robust to
impure squeezing at the input. Indeed, because the in-
fidelity depends only on the squeezed quadrature of the
input drive, a thermal squeezed drive, or losses before
the cavity, are simply equivalent to a reduction in the
squeezing strength [26].

In summary, we have described a protocol to improve
the fidelity of a two-qubit resonator-induced phase gate
by over an order of magnitude. This improvement is
based on which-path information erasure by using single-
mode squeezing. The optimal squeezing strengths are
close to what can already be achieved experimentally
with superconducting quantum circuits. This scheme,
based on tailoring the reservoir to dynamically protect a
system during a logical operation, broadens the scope of
quantum-bath engineering.
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δr
2π

κ
2π

χ ε0 F 0
avg F Sqz.

avg Squeezing

(MHz) (MHz) (MHz) (GHz) % % Power (dB)

320 10 8 0.796 98.16 99.89 16

640 10 8 2.31 98.96 99.95 19

111.4 0.05 4.5 0.294 99.96 99.9965 15.7

TABLE I. Average gate fidelity with and without squeezing
(F Sqz.

avg and F 0
avg, respectively). The gate Uzz is implemented

in time tg = 200 ns.
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