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Within a unified formulation, encompassing self-electrophoresis, self-diffusiophoresis, and self-
thermophoresis, we provide a simple integral kernel transforming the relevant surface flux to particle
velocity for any spheroid with axisymmetric surface activity and uniform phoretic mobility. Appro-
priate scaling of the speed allows a dimensionless measure of the motion-producing performance
of motor shape and activity distribution across the surface. For bipartite designs with piecewise
uniform flux over complementary surface regions, the performance is mapped out over the entire
range of geometry (discotic through sphere to rod-like) and of bipartitioning, and intermediate as-
pect ratios that maximize performance are identified. Comparison is made to experimental data

from the literature.
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The challenge of powering motion at the (sub)micro-
scale has motivated the development of a variety of abi-
otic micromotors as building blocks of micromachines
over the past decade. [IH4] Artificial self-phoretic colloids,
harvesting energy from the environment and transducing
it to motion via active surfaces, offer a unique solution to
this challenge [BHIT]. The performance of a self-phoretic
particle is determined by its shape and distribution of
surface activity, whether the operative mechanism is self-
diffusiophoresis [5], self-electrophoresis [fH9, [12], T3], or
self-thermophoresis [14], [15] While quantitative analysis
of these factors are essential for designing fast and effi-
cient motors, studies are mainly limited to spheres[I6] or
long thin rods and neglect intermediate shapes and disks,
though sphere dimers [I7] have also received attention.

In this Letter we seek to elucidate the determination of
self-phoretic particle performance by both overall shape
and surface distribution of activity, under common ap-
proximations of uniform phoretic mobility, thin interac-
tion layer and linearity. The practical benefit is a rational
approach to higher performance — greater speed for the
same energy (fuel) consumption. This is complementary
to studying a genuine efficiency such as hydrodynamic
dissipation divided by reaction enthalpy. [I6]. Within
an approach unifying various self-phoresis mechanisms,
we explore the design space of axisymmetric surface ac-
tivity for the entire spheroid family, which smoothly
interpolates from disks through spheres to needle-like
shapes. The fundamental innovation on which the treat-
ment turns is a simple integral kernel [Eqs. and Fig.
2] quantifying the local effectiveness of surface activity at
producing motion. Applying it to bipartite flux distribu-
tions, the performance of the full range of aspect ratio
and bipartitioning (i.e., 19 in Fig. [I) is mapped out in
detail, and intermediate optimum geometries are identi-
fied. Previously obscure trends, such as a non-monotonic
dependence of performance (scaled velocity) on aspect
ratio are thereby clarified. Explicit, closed-form expres-
sions for the speed and performance are given for these

designs in Supplementary Information.

In Anderson’s unifying picture [I8] for passive parti-
cles, phoresis is mediated by an externally-imposed gra-
dient of a field 7, such as concentration of a chem-
ical species (diffusiophoresis), electric potential (elec-
trophoresis) or temperature (thermophoresis). To lead-
ing order in interaction layer thickness (assumed small
compared to particle size), the tangential gradient of v
generates a slip velocity vsiip = ppn Vs at the outer edge
of the boundary layer. The phoretic mobility p,, usually
depends quadratically on the interaction layer’s length
scale [5,[7, [8 12]. In the case of a spheroidal particle, the
resulting phoretic velocity is known [19] to be
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where 7 is the outward-pointing unit vector normal to
the surface, r is position relative to the spheroid center,
and V is particle volume. We approximate pp, to be
uniform, as is commonly done [5, [7), [8], [T2].

While in phoresis of passive particles, « is controlled
externally, a self-phoretic particle sustains the gradient
of ~ itself by generating a heterogeneous surface flux I'.
Therefore, it may be more useful and perspicuous to re-
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FIG. 1. (color online). Standard bipartite geometry on the
spheroid. The border between the two regions corresponds
to scaled z coordinate n = mo. (n is equivalent to cos@ for
a sphere.) (left) In the source/sink case, both sides on the
surface are active while (right) in the source/inert case only
one side is active.



late the particle velocity directly to the pattern of sur-
face activity I' directly, rather than indirectly through
~ [BHIT]. Motion of present-day motors has little effect
on chemical kinetics at their surfaces and only the re-
sulting flux is needed for our study [7]. Because, the
diffusion of an ion or molecule with D ~ 10~%m? /s over
the length of a 1 pm motor corresponds to an effective
speed of 1 mm/s, much larger than the speed of the par-
ticle. To leading order in interaction layer thickness and
flux, -y satisfies the Laplace equation with boundary con-
dition I' = —Dn -V~, where D involves a diffusion co-
efficient or conductivity. Then ~ is given, up to a con-
stant as D~1L{T} [7] where £ is a geometry-dependent
Neumann-to-Dirichlet operator. Thus, in the limit of
small Péclet number, self-phoretic velocity of a spheroid
is U = — 455 [¢n -7V, L{T} dS. For axisymmetric flux
T', a remarkable simplification [20] allows the explicit ex-
pression
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where, as depicted in Fig. |1} €, is the symmetry direction,
a (b) is the half-length along (perpendicular to) the sym-
metry axis, and —1 < n = z/a < 1. The dimensionless
kernel
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expressing the contribution of flux at each location on
the motor surface to motion, is the main protagonist of
this Letter.

Inspection of the graphs of K (n;a/b), shown in Fig.
for a range of aspect ratios a/b, is already quite revealing.
K(n;£=1) is the reflection of K (n;/) across the diagonal
¢ =a/b=1. Thus, for a sphere (a/b = 1), K degener-
ates to a straight line, a known result [9]. Deviation from
sphericity by increase of the aspect ratio a/b increasingly
suppresses |K| around the equator 7 = 0. The earliest
generation of self-electrophoretic cylindrical rods [3] had
an aspect ratio of about 5, so this effect is strong even un-
der ordinary conditions. One message is clear: for a thin
rod-like particle, only surface activity near the poles con-
tributes significantly to self-phoresis. Thus, in designing
a motor with large aspect ratio, details of the surface ac-
tivity around the equatorial region are insignificant and
may be chosen for convenience. This phenomenon ex-
plains why, in numerical simulation of self-electrophoretic
long rods, a jump discontinuity in surface cation flux dis-
tribution around the equator can provide the essential
physics and give consistent results with experimental ob-
servations [21].

On the contrary, as the particle deviates from spheric-
ity toward a discoidal shape, zones of large |K| expand
from the poles toward the equator. This suggests, per-
haps rather surprisingly, that oblate designs can be much

K(n;a/b) =

K(n,a/b)

FIG. 2. (color online). The spheroid velocity kernel, Eq. ,
for a range of aspect ratios. K (n;£7") is just K (n;£) reflected
across the diagonal £ = a/b = 1. For a sphere (a/b = 1) the
kernel is simply linear. On the prolate side (a/b > 1), a zone
of suppressed effectiveness moves outward from the equator
with increasing aspect ratio, and on the oblate side (a/b < 1)
a zone of enhanced effectiveness moves inward from the poles
as aspect ratio is decreased. Inset: The “belly” n is the point
at which dK/dn = 1 and provides a quantitative expression
of the division into effective and ineffective regions. The plot
shows 7, as a function of aspect ratio.

more effective at converting chemical activity into speed.
This is a region of the design space which deserves more
experimental attention than it has received to date.

Now, we exploit the kernel to explore specific pa-
rameterized families of motor designs. Since simple mod-
els without too many parameters are best for revealing
generic trends, we consider bipartite models with flux
taking distinct uniform values over two complementary
regions of the surface. There are two families to be
considered. Source/inert (or sink/inert) particles occur
in cases of self-diffusiophoresis and self-thermophoresis,
with an active region which is a pure source (or sink),
and a passive region. Self-electrophoretic particles, by
contrast, have a source/sink configuration. Since the net
ion flux from the entire surface must be zero, equal quan-
tities of active ions are produced on the source region and
consumed on the sink.

The idea now is to isolate from the raw speed a
performance characteristic capturing the contribution of
geometry alone — meaning the shape of the particle and
the relative distribution of activity I' over the particle
surface. A natural speed scale independent of these ele-
ments is
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with ||| = [4|T|dA and S the total surface area. Thus,
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FIG. 3. (color online). Performance of a source/sink motor

as a function of aspect ratio for various values of the source-
sink boundary 79. The limit, as aspect ratio tends to zero
is limg /o0 U/U* = 2(1 — |no])/(1 — 15) At mo = 0, the thin
disk limit of the scaled velocity is thus 2, and it exceeds 1
(the spherical value) for o < 0.544. At no = /3/7 ~ 0.655,
the derivative at the spherical point is zero. Below this value,
the maximum is for an oblate spheroid, and above it, for a
prolate spheroid, as also shown in the inset. Inset: The dashed
red curve shows the maximum attainable value of the scaled
velocity over all aspect ratios for given source/sink boundary
no. The solid blue curve shows the aspect ratio at which
that maximum is attained. Note, the vertical scale therefore
quantifies different things for the two curves. The maximizing
aspect ratio [a/b]max ratio is very nearly zero for all o < 0.35.

we consider the dimensionless scaled velocity
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as a measure of geometrical performance, hence we some-
times call it “performance”. This quantity is well-defined
only for active particles (U* # 0). If S is regarded as
fixed, even as the shape and activity distribution are var-
ied, U /U* is proportional to speed produced per unit to-
tal activity, and is a sort of efficiency in that sense. Using
U/U*, we shall discuss the performance of source/since
and source/inert configurations. Closed-form expressions
are given in the Supplementary Information.
Source/sink. A source/sink design (see Fig. has a
uniform positive flux over the source region {n > 1o} of
area Sy, and a balancing uniform negative flux over the
sink region {n > no} of area S_ = S — S;. Using the
constraint of zero net flux in the definition , the scaled
velocity for this family is

U szt
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FIG. 4.  (color online). Fit of speed measurements[22] on
half Au, half Pt cylinders of varying length to the formula
U = 2(—ppra/2D) /(1 + a/b) derived for ng = 0 spheroids.
The single fitting parameter is —pppa/2D ~ 19.5 pm/s, which
is the velocity scale characterizing these motors.

which is even in 7, as required by symmetry. Plots of
the scaled velocity for a variety of values of 7y are de-
picted in Fig. [3| as a function of aspect ratio. Since zero
source area implies zero speed, it may seem a bit sur-
prising that U /U* does not tend to zero as 79 — +1 at
fixed a/b. But if ny = £1, we cannot demand U* # 0,
either, so we must require |ng| < 1. An apt analogy is to
a heat engine, the efficiency of which is increased by op-
erating it more slowly. Yet efficiency is not maximized at
zero speed of operation, for it is ill-defined there. In the
discoidal regime, speed decreases monotonically as |no]
is increased, whereas in the prolate regime, it increases
monotonically. Note that this involves comparing parti-
cles of identical size and shape, so that the same trend is
valid if total flux is held fixed. For ng = 0, the source/sink
performance U /U* tends to 2 as a/b — 0. For small val-
ues of 7y, oblate designs have highest performance. The
relative advantage of discoidal designs decreases as 19 in-
creases. At 79 ~ 0.655, the maximum performance is for
a sphere, and beyond that, it lies in the prolate range. As
a result, when 19 2 0.655, for each oblate shape (a/b < 1)
there is a prolate shape with the same scaled velocity. It
has been previously noted [9] that the scaled speed of a
sphere is insensitive to 19. Now we see that this feature
is specific to the sphere. The phenomenon of the peak of
U /U* moving up and to the right as 7y is increased be-
yond 0.655 is quantified in the inset of Fig.[3] The dashed
red curve shows the maximum value [U/U*]|yax, and the
blue solid curve, the aspect ratio [a/b]lmax at which it
occurs. Only non-negative 1y are shown since U/U* is
even in 79. Over most of the range of 7y, the variation
is no more than a factor of two. As ng — 1, [U/U*|max
diverges, but reaching it requires a/b to diverge. Realisti-
cally, neglected effects and scales, such as the interaction
layer thickness, will cut off the divergence.

For the common antisymmetric
Eq. @ yields the simple
U = 2(—pipne/2D) /(1 +afb),

design 19 =0,
explicit  expression
with «a the wuniform



value of T' on the source. Dhar et al. [22] measured
speeds of cylindrical half-Au/half-Pt rods of the same
radius but differing diameters in the same medium.
Approximating those shapes by spheroids and applying
the source/sink model with the same value of a for all
rods leaves a single fitting parameter. The fit in Fig. []
seems good enough that if data were available for a
variety of fuel concentrations, it might be possible to
discover useful information about the reaction kinetics.

The simple formula in the previous paragraph is ezxact
for all spheroids. Some expressions for the slender body
limit a/b > 1 which have appeared in the literature [3|
9l [6] contain logarithmic factors, which can now be seen
to be spurious, the correct asymptotic behavior being
simply b/a. This has also been noted in [11].

Source/inert or sink/inert. The difference between
a pure source and a pure sink configuration is a simple
matter of sign, so we consider just the source case, with
uniform source over the region {n > g} of area S, ; the
rest of the motor surface is inert (Fig. . Equation
yields

u s [t
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We concentrate now on differences from the source/sink
geometry. In contrast to that case, U /U* is not even in
70, since there is no symmetry to guarantee that. One as-
pect of this is that, at fixed aspect ratio, U /U* is bounded
away from zero as 19 — 1, similar to source/sink sce-
nario, but tends to zero as nyg — —1, since nonzero U*
makes sense at 179 = —1. Correspondingly, the proper
domain is —1 < 79 < 1. Fig. [5| shows a range for both
small source (n9 > 0) and large source (19 < 0). For
1o > 0, the curves are qualitatively similar to those for
a source/sink particle. For ny < 0, however, the two
cases differ greatly. In particular, the performance is
a monotonically decreasing function of aspect ratio for
all ny < 0. In the spherical case (a/b = 1), the perfor-
mance U /U* =1+ ng is not independent of 7y as it was
for a source/sink particle, but decreases with increase in
the source area. In the extreme discotic limit a < b,
U/U* =21 —Inol)/(1 —nolno|) has a maximum value 2
at the half-and-half geometry 1y = 0, as for a source/sink
particle, and decreases as |ng| increases. The maximum
attainable scaled velocity at fixed 19 and the correspond-
ing value of aspect ratio at which it is attained are also
qualitatively similar to the source/sink case for ng > 0.
However, as 19 decreases from zero to —1 the maximum
is attained only in the limit a/b — 0 and [U /U*]max drops
monotonically from 2 to zero; as 7y becomes more neg-
ative, the source is spread more evenly across the sur-
face so that activity at one end counteracts that at the
other. At constant ||T'||/S5, regardless of the value of 7o,
the (non-scaled) speed is always maximum for extreme
oblate particles [23], as previously observed for 79 = 0 [5].
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FIG. 5. (color online). Performance of a pure-source motor
as a function of aspect ratio for various values of the source-
inert boundary 7. Inset: Maximum attainable scaled velocity
at fixed no (dashed red), and the aspect ratio at which it is
attained (solid blue). Compare Fig. [3| for the source/sink
case.

Understanding the effect of geometry and surface ac-
tivity on autonomous active colloids is essential for de-
signing powered machines with tuned properties at nano-
and micro-scale. While in phoresis of passive particles
the driving field is external, active colloids harvest energy
from their environment and self-generate the driving filed
through a surface flux. The self-phoretic velocity expres-
sion , connecting the motor velocity to its shape and
distribution of surface flux, is general across the various
self-phoretic mechanisms, opening the route to a unified
formulation connecting velocity to surface activity and
flux for various geometries with uniform phoretic mobil-
ity. For an arbitrary axisymmetric geometry with ax-
isymmetric flux, in consequence of the linearity and scal-
ing properties of the governing equations, a formula like
holds with some kernel K expressing the contribution
of flux at each location on the motor surface to motion.
The spheroid family distinguishes itself through the ex-
plicit flux-to-speed kernel . Since phoretic mobility
tpn and diffusivity D are constant material properties,
dimensional analysis then shows that K is dimension-
less. Therefore, so long as I'(n) is held constant, the size
of the particle drops out. For a given self-phoresis mech-
anism, I'(n) may have an implicit size dependence when
directly controllable conditions such as fuel concentration
are maintained constant [7]. However, such dependences
vary from one self-phoretic mechanism to another, and
thus fall outside our unifying scope. For unifying studies
across different self-phoretic mechanisms, we regard I'(n)
as simply given in expression .



Even with simple assumptions about the surface flux
distribution, the theory make good contact with exper-
imental results, as Fig. [4] shows, and explains the con-
sistency of experimental observation with numerical sim-
ulation result for a discontinuous flux jump around the
equator in Ref. [2I]. Oblate (discotic) spheroids — to our
knowledge these have received no previous experimental
attention — emerge from this survey of the design space
as potentially interesting candidates for experimental in-
vestigation.
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