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We study the low-temperature physics of the SU(2)-symmetric spin-1/2 Heisenberg antiferromag-
net on a pyrochlore lattice and find a “fingerprint” evidence for the thermal spin-ice state in this
frustrated quantum magnet. Our conclusions are based on the results of bold diagrammatic Monte
Carlo simulations, with good convergence of the skeleton series down to temperature T/J = 1/6. The
identification of the spin-ice state is done through a remarkably accurate microscopic correspondence
for static structure factor between the quantum Heisenberg and classical Heisenberg/Ising models
at all accessible temperatures, and the characteristic bow-tie pattern with pinch points observed at
T/J = 1/6. The dynamic structure factor at real frequencies (obtained by analytic continuation of
numerical data) is consistent with diffusive spinon dynamics at pinch points.

PACS numbers: 75.10.Jm, 75.10.Kt, 02.70.Ss

A characteristic feature of all frustrated magnets is
close competition among numerous classical spin con-
figurations and absence of an obvious arrangement that
gains the maximum amount of energy from all interac-
tion terms [1]. Frustration prevents the development of
long-range magnetic orders and often leads to novel and
exotic collective phenomena. One of the best known ex-
amples is the spin-liquid groundstate [2] that does not
break any symmetry and supports fractional elementary
excitations and emergent gauge fields.

In many quantum antiferromagnets (AFM), frustra-
tion has a simple geometric origin when nearest neighbor
(n.n.) spins form triangular or tetrahedral units. The
canonical three-dimensional example of such a system is
the Heisenberg AFM on a pyrochlore lattice that consists
of corner-sharing tetrahedrons. The pyrochlore structure
is found in numerous magnetic materials and is directly
associated with such exotic low-temperature phenomena
as spin glass freezing in Y2Mo2O7 and Y2Mn2O7 [3–5],
classical spin-ice behavior in Dy2Ti2O7 and Ho2Ti2O7

[6–8], and cooperative paramagnetism down to ultra-
low temperatures in Tb2Ti2O7 (and, presumably, a spin-
liquid groundstate) [9–11].

In this Letter, we study the SU(2)-symmetric spin-1/2
Heisenberg AFM on a pyrochlore lattice,

H = J
∑
<ij>

Si · Sj (J > 0) , (1)

where Si is the spin operator on site i, and 〈. . .〉 stands
for n.n. sites. Despite its simplicity, this model is known
to be notoriously difficult to solve at low, but finite, tem-
perature T < J where perturbative treatments are not
reliable, conventional Monte Carlo methods suffer from
the notorious sign problem (because of frustration), and
variational methods are not applicable. As far as we
know, diagrammatic Monte Carlo (DiagMC) is the only
generic method capable of establishing controlled results

in this strongly correlated regime [12–14], which is also
the region most frequently studied experimentally.

FIG. 1. Sketch of the finite-temperature phase diagram for
the XXZ model based on the perturbation theory. For Jxy �
Jzz, the first crossover at T ∼ Jzz (dotted line) is to the
thermal spin-ice state; it is followed by a second crossover at
T ∼ J3

xy/J
2
zz to the low-temperature U(1) spin-liquid ground

state. Whether the spin-ice state survives on approach to
the isotropic Heisenberg point, Jxy/Jzz = 1 is beyond the
perturbation theory.

Several analytic and numeric studies [16–22] looked
at properties of the related XXZ model HXXZ =∑
<ij> JzzS

z
i S

z
j + Jxy(Sxi S

x
j + Syi S

y
j ) that has lower

U(1) ⊗ Z2 symmetry, admits perturbative treatment
when Jxy � Jzz, and reduces to the Ising system at
Jxy = 0. At temperature T < Jzz, the Ising system
features emergent gapped Sz = 1/2 spinons that carry
fractionalized “electric” charges and interact by Coulomb
forces; they remain deconfined because of screening.
Charged excitations “freeze out” at low temperature,
leaving a massively degenerate ground state manifold.
It is known as the spin-ice phase where degenerate states
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satisfy the “2-in/2-out” ice rule on each tetrahedron [23]
and give rise to dipolar correlations. Its characteristic
feature is the bow-tie pattern with pinch point singular-
ities in the static structure factor. Spin-ice states were
also predicted to exist in the large-S and large-N limits
of spin models [16, 19, 20, 22, 24].

Weak transverse terms, |Jxy| � Jzz, can be dealt with
by degenerate perturbation theory [18]. At third-order
(and low-enough temperature), quantum exchange pro-
cesses ∝ J3

xy/J
2
zz operating within the hexagons are ar-

gued to lead to the effective “quantum electrodynam-
ics” type system in the continuum limit. In addition to
spinons, the system features emergent gapped monopoles
carrying fractionalized “magnetic” charges and gapless
U(1) gauge bosons, or “photons” [18, 25–27]. The re-
sulting finite temperature phase diagram is illustrated in
Fig. 1. The ground state is argued to be a U(1) quan-
tum spin liquid with gapless “photon” excitations. Quan-
tum fluctuations suppress the characteristic pinch-point
singularities of the classical spin-ice, and this fact can
be used for experimental identification of the spin-liquid
state from the structure factor.

To answer what happens in the non-perturbative case,
Jxy/Jzz ∼ 1, is a far more difficult task. In this Letter, we
employ the DiagMC method to study the isotropic case
Jxy/Jzz = 1 in (1). We find the spin-ice state dominat-
ing system properties over a wide temperature interval,
from T ∼ J down to the lowest simulated temperature
T = J/6. At T = J/6 the static structure factor features
a characteristic bow-tie pattern with pinch points. The
ultimate “fingerprint” evidence follows from remarkable
quantum-to-classical correspondence (QCC) [13] between
the static spin correlation functions of quantum Heisen-
berg, classical Heisenberg, and classical Ising models on
the same lattice at all length scales and all accessible
temperatures. Using analytic continuation methods, we
compute the dynamic structure factor at real frequen-
cies and observe diffusive spinon dynamics at the pinch
points and local spin-fluctuation continuum along the
nodal lines. These results are consistent with the effec-
tive hydrodynamic theory for the spin ice [20, 28]. A
quantum spin-liquid state, if any, may emerge only at
temperatures significantly below J/6.

DiagMC and Fermionization. The DiagMC is a con-
trolled numerical approach based on stochastic sampling
of all skeleton Feynman diagrams up to some high or-
der N and extrapolation to the N →∞ limit; the series
are supposed to be convergent or subject to the analytic
continuation beyond convergence radius by resummation
protocols [12, 29]. Our implementation of DiagMC for
(1) is based on the G2W skeleton expansion in the real-
space–imaginary-time representation similar to that de-
scribed in Refs. [13]. To arrive at the diagrammatic for-
mulation, spins in Eq. (1) are replaced with localized

fermions: Si = 1
2

∑
αβ f

†
iασαβfiβ , where fiβ is the stan-

dard fermionic annihilation operator on site i, and σ are

Pauli matrixes. Since this procedure enlarges the Hilbert
space by introducing unphysical states with zero and dou-
ble fermion occupancy, the Popov-Fedotov trick [14, 15]
is to add a complex chemical potential term to (1) to
ensure exact cancelation of all unphysical contributions
in grand-canonical statistical averages. As a result, one
ends up with the interacting flat-band fermionic Hamil-
tonian

H =
J

4

∑
<ij>
αβγδ

σαβ ·σγδf
†
iαfiβf

†
iγfiδ−

iπT

2

∑
i

(ni−1), (2)

where ni =
∑
α f
†
iαfiα. The DiagMC method is used to

sample both the auxiliary single-particle propagators and
the physical spin correlation functions. The technique
allows us to go far beyond the mean-field approximation
and account for all skeleton diagrams up to the 6-th order
(> 105 graphs). We simulate finite systems with periodic
boundary conditions and always consider system sizes
much larger than the spin correlation length to ensure
that finite-size corrections remain negligible.

Correlation function. Magnetic properties are deduced
from the correlation function χ(ri, rj ; τ) = 〈Ŝ(ri, 0) ·
Ŝ(rj , τ)〉, where ri is the radius vector of the lat-
tice site i. The structure factor in the momentum–
Matsubara-frequency domain is given by S(Q, iωn) =

(1/V )
∑
i,j

∫ β
0
dτχ(ri, rj ; τ)e−i[Q·(rj−ri)+ωnτ ] where Q

belongs to the first Brillouin zone (BZ), ωn = 2πn/β
is the Matsubara frequency, and V is total number of
spins. Static response is described by S(Q, 0), and the
uniform magnetic susceptibility χu is given by S(0, 0).

In Fig. 2 we compare DiagMC and the high-
temperature expansion [30] results for χu. At high tem-
perature T/J > 2 the agreement between the two meth-
ods is at the level of three meaningful digits. As temper-
ature is lowered below 1.5J , the high-T series explode
while the diagrammatic series continue to converge at
least down to T/J ≈ 1/6. In the inset of Fig. 2 we
show how χu depends on the inverse diagram order 1/N
at T/J = 1/2. This temperature is well below the di-
vergence point of the high-T series and, thus, is in the
strongly correlated paramagnetic regime. Clearly, the
answer does not change outside of error bars after ac-
counting for 5-th and 6-th order diagrams.

In Fig. 3, we show the evolution of the static structure
factor in the ([hh0][00l]) plane of the reciprocal space
from high (T/J = 2) to low (T/J = 1/6) temperature.
As the temperature is lowered, the system goes through a
smooth crossover from the high-T state with the checker-
board pattern in S(Q, 0) to the low-T state with the
bow-tie pattern and pseudo-singular pinch points. As
pointed out in Refs. [19, 20], these strongly anisotropic
pinch points are a direct consequence of the “2-in/2-out”
ice rule. All by itself, this is strong evidence that at
T/J = 1/6 the isotropic Heisenberg model is dominated
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FIG. 2. (Color online) Uniform susceptibility χu as a func-
tion of temperature from the DiagMC approach(red circles)
and from the high temperature expansion (HTE) method [30]
truncated at different expansion orders. Inset: χu at T/J =
1/2 as a function of inverse maximal skeleton diagram order
N . The errorbar on the final answer, shown as the blue re-
gion, is a combination of statistical Monte Carlo errors for
fixed-N points and the systematic error of extrapolation to
the N →∞ limit.
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FIG. 3. (Color online) Structure factor S(Q) in the
([hh0][00l]) plane at T/J = 2 (left panel) and T/J = 1/6
(right panel). Note that the color scheme contrast (shown at
the bottom) is significantly enhanced for the left panel.

by the spin-ice physics with excitations forming a dilute
gas of “electric” charges.

Quantum-to-classical correspondence. Taking system
configuration “snapshots” is equivalent to considering
multi-point correlation functions in the diagrammatic ap-
proach (an impossible task for a large collection of spins),
not to mention that the standard technique calculates
their statistical averages. QCC comes to rescue here. In
addition to (1), we consider the Ising model with spins
s = ±1 and the classical Heisenberg model with unit-
vector spins s on the pyrochlore lattice. Both classical
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FIG. 4. (Color online) Upper panel: Normalized static sus-
ceptibilities (by modulus), |χs(r)/χs(0)|, in quantum Heisen-
berg, classical Heisenberg and classical Ising models at tem-
peratures TQH/J = 1/2, TCH/J = 0.8340, TI/J = 2.5374 (left
panel), and TQH/J = 1/6, TCH/J = 0.4279, TI/J = 1.4501
(right panel). The QCC is satisfied within the error bars at
all distances. Lower panel: Quantum-to-classical tempera-
ture relationship plot TCH vs TQH. The straight black line
is the high-T relation TCH = (4/3)TQH. Inset: temperature
relationship TCH vs TI between the classical Heisenberg and
Ising systems. The straight black line is the high-T relation
TCH = (1/3)TI.

models have nearly identical bow-tie patterns in S(Q) at
T = 0 [19, 20]. What we establish here, is an accurate
QCC for spin correlation functions (static in the quantum
case) between the original quantum model at tempera-
ture TQH and its classical counterparts at temperatures
TI and TCH, respectively. The result is the “fingerprint”
identification of dominant system configurations at low-T
as originating from the spin-ice state (temperatures need
to be fine-tuned because quantum and classical models
have different spin values and configuration spaces [13]).

The QCC protocol is as follows. For the quantum sys-
tem, we compute the static correlation function χ(r) ≡∫ β
0
dτχ(r0, ri; τ) where r = ri− r0 (its classical counter-
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parts are defined similarly without the τ -dependence).
We normalize the correlation functions to unity at the
origin, f(r) = χ(r)/χ(0), and then consider the classical-
model temperature (TI or TCH) as a free parameter to ob-
tain the best fit for f(r) curves. The essence of QCC is
that the entire functional dependence f(r) is reproduced
with high accuracy at all distances with this minimally
required effort [13].

Remarkably, we observe a perfect match between the
quantum result at TQH and classical results at rescaled
temperatures; the accuracy is at the sub-percent level at
any temperature. In Fig. 4(a) we show two examples of
QCC at TQH/J = 1/2 and TQH/J = 1/6. Since sys-
tem “snapshots” are readily available in classical models,
the identification of the quantum state becomes unam-
biguous. [It should be noted that QCC is absent for
the equal-time correlation function χ(r, τ = 0).] The
relationship between the temperature of the quantum
Heisenberg model and its classical counterpart is plot-
ted in the lower panel of Fig. 4; the relationship between
the classical temperatures is shown in the inset of the
lower panel in Fig. 4.

It is not surprising to observe QCC in two limit-
ing cases: (i) at high temperature T/J � 1 when
weak short-range correlations are captured at the low-
est series-expansion order, and (ii) at distances much
larger than the correlation length where statistical de-
scription in terms of the coarse-grained field becomes uni-
versal. What we observe is different: the correspondence
holds at all distances starting from the nearest-neighbor
sites and at all temperatures, including the crossover re-
gion T/J ∼ 1. Similarly accurate QCC was reported
for Heisenberg models on the square and triangular lat-
tices [13] (it fails in 1D). Currently, sharp theoretical un-
derstanding of QCC for spin-1/2 magnetic systems in
D > 1 is missing.

Having established that static properties correspond to
those of the spin ice, we proceed with the study of dy-
namic response and compute the structure factor on the
real frequency axis. This quantity can be directly mea-
sured in inelastic neutron scattering experiments. Real
and Matsubara frequency functions are related to each
other by the standard linear-response theory relation

S(Q, iωn) =
1

π

∫ ∞
0

(1− e−βω)ω

ω2
n + ω2

S(Q.ω)dω (3)

This integral equation is solved using numerical ana-
lytic continuation methods [31, 32]. The result for two
characteristic momentum points Q1 = (0, 0, 2πa ) and
Q2 = (0, 0, 5π4a ), where a is the lattice constant, is shown
in Fig. 5. On the basis of the thermal spin-ice picture,
we expect two dynamic contributions: one from slow dif-
fusive motion of spinons and the other from propagating
spin waves. At the pinch point Q1, the dynamic response
is best described as that of the diffusive (Drude-type)
spinon peak [20, 28] . The second point (0, 0, 5π4a ) is on

one of the nodal lines, which correspond to special direc-
tions along which the spinon contribution is suppressed
due to the ice rule and lattice structure [20]. Indeed, for
this point the diffusive peak at ω = 0 is absent, and a
broad continuum originating from local spin fluctuations
with the typical energy scale ω ∼ J emerges instead.
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FIG. 5. (Color online) Dynamic structure factor as a function
of frequency at the pinch point Q1 = (0, 0, 2π/a) (left panel)
and on the nodal line at Q2 = (0, 0, 5π/4a).

Discussion. Using the DiagMC technique, we carried
out a systematic investigation of the quantum SU(2)-
symmetric Heisenberg AFM on the pyrochlore lattice.
The correlated paramagnetic state at temperature well
below the exchange coupling constant is unambiguously
identified as the thermal spin-ice phase. The U(1)
spin liquid (predicted from perturbative studies of the
strongly anisotropic XXZ model) has not been observed.
Apparently, the characteristic temperature to see the
emergent gauge structure is much lower than T/J = 1/6.

Our work paves the road for applications of DiagMC
to studies of frustrated magnetic materials with compli-
cated Hamilitonians when in (1) the exchange constant
J is replaced with a 3× 3 tensor and interactions are ex-
tended beyond the nearest-neighbor sites [33, 34]. Deal-
ing with such Hamiltonians does not present any addi-
tional burden for the DiagMC method because in the
skeleton formulation all lines are automatically assumed
to be fully renormalized and non-local in space-time. Our
work demonstrates that it is possible to use DiagMC to
perform accurate ab initio calculations of both static and
dynamic response for frustrated magnets, and obtain re-
sults that can be directly compared with experiments
such as the inelastic neutron scattering. In particular,
one’s ability to enter the strongly correlated regime and
accurately compute properties at temperatures signifi-
cantly below J leads to the possibility of extracting the
relevant Hamiltonian parameters for frustrated magnetic
materials from measurements.
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