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We propose a universal non-linear sigma model field theory for one dimensional frustrated ferromagnets,
which applies in the vicinity of a “quantum Lifshitz point”, at which the ferromagnetic state develops a spin
wave instability. We investigate the phase diagram resulting from perturbations of the exchange and of magnetic
field away from the Lifshitz point, and uncover a rich structure with two distinct regimes of different properties,
depending upon the value of a marginal, dimensionless, parameter of the theory. In the regime relevant for one
dimensional systems with low spin, we find a metamagnetic transition line to a vector chiral phase. This line
terminates in a critical endpoint, beyond which there is at least one multipolar or “spin nematic” phase. We
show that the field theory is asymptotically exactly soluble near the Lifshitz point.
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The study of order in all its variety anchors the field of con-
densed matter physics. Some current goals at the vanguard of
this enterprise include characterizing “hidden” orders, deter-
mining the mechanism behind “competing” or “intertwined”
orders, and understanding quantum phase transitions between
different orders. These problems arise in diverse systems
ranging from frustrated quantum magnets to correlated elec-
tron materials like the cuprates.

Here we describe a unification of the three above themes in
a tangible context within quantum magnetism. Specifically,
we study a quantum Lifshitz transition between a ferromagnet
and a spiral magnet or quantum paramagnet, which is real-
ized for example in the well-studied Frustrated Ferromagnetic
Heisenberg Chain (FFHC):

HFFHC =
∑
n

[−Sn · Sn+1 + βSn · Sn+2 − hSzn] . (1)

With increasing frustration β, Eq. (1) has a Lifshitz point at
β = 1/4, h = 0. Numerical studies of the FFHC have
previously demonstrated that metamagnetism and a rich se-
quence of multipolar phases – a type of hidden order which
does not appear in spin-spin correlation functions – appear in
the vicinity of this point for non-zero applied magnetic field h.
The simplest of these phases is the (spin) angular momentum
p = 2 multipole, or quadrupolar state, also known as a spin
nematic, which breaks spin rotational symmetry but preserves
invariance with respect to time reversal [1]. As such, the spin
nematic is characterized by an order parameter bilinear in the
microscopic spins. It can be understood as a state of bound,
condensed pairs of magnons[2–8]. The spin nematic has been
sought experimentally in a number of quasi-one-dimensional
materials which approximately realize the FFHC [9–16].

Theoretically, the proliferation of multipolar phases with
p ≥ 2 near the Lifshitz point in the FFHC is most extraordi-
nary, and begs theoretical explanation. We provide a universal
theory for the Lifshitz point, formulated as a non-relativistic
Non-Linear Sigma Model (NLSM) with dynamic critical ex-
ponent z = 4. An asymptotically exact analytic solution of
the Lifshitz NLSM produces the line of the first-order metam-

agnetic transitions which terminate at the metamagnetic end-
point, beyond which the transition from the saturated state
turns continuous. We demonstrate that at least the p = 2
nematic phase is described by the NLSM, and speculate that
higher multipoles may also be captured in the same frame-
work.

Lifshitz non-linear sigma model: Instead of focusing on a
specific microscopic model such as the FFHC in Eq. (1), we
introduce a universal quantum field theory description which
is based on translational symmetry and SU(2) spin-rotation in-
variance. Since we are interested in continuous transitions out
of a ferromagnet, whose magnetization is O(1) and quantized
given SU(2) symmetry, we expect that locally there is a (pos-
sibly fluctuating) magnetization, even close to and on both
sides of the quantum critical point. Hence we propose that the
low-energy properties of the system are described by a non-
linear sigma model (NLsM) formulated in terms of unit vector
m̂ = (m̂1, m̂2, m̂3) which describes magnetization density.
The action is

S =

∫
dxdτ

{
isAB [m̂]− δ|∂xm̂|2 + κ|∂2

xm̂|2

+λ|∂xm̂|4 − hm̂3

}
. (2)

Here s is the spin and AB is the Berry phase term describing
those spins. It can be written in various ways, for example
[17],

AB =

∫ 1

0

du m̂ ·∂τm̂×∂um̂ =
m̂1∂τm̂2 − m̂2∂τm̂1

1 + m̂3
, (3)

where we introduced a fictitious auxiliary coordinate u such
that m̂(u = 0) = ẑ and m̂(u = 1) = m̂ is the physical
value. The main important point is that AB contains a single
derivative with respect to imaginary time τ .

The action S contains all leading terms in gradients of m̂.
The parameter δ (∝ β − 1/4 in the FFHC) tunes the zero
field criticality: a trivial fully ordered ferromagnetic (FM)
state with constant m̂ and no fluctuations obtains for δ < 0,
while the system is non-trivial for δ > 0. The absence of
fluctuations for δ < 0 is due to the AB term, which makes
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the dynamics completely different from the commonly stud-
ied relativistic NLsM’s. Further, note that there are two terms,
κ and λ, quartic in derivatives, which is crucial in the follow-
ing. The λ term has been ignored in previous field theoretic
approaches[18, 19].

The action (2) needs a condition for stability against large
gradients of m̂. Starting from constraint m̂ · m̂ = 1, it is easy
to obtain |∂2

xm̂|2 > |∂xm̂|4, which is enough to show stability
is present so long as λ+ κ > 0. This means negative λ in (2)
is allowed so long as λ > −κ.

The action describes several distinct dynamical regimes.
For δ < 0, the excitations above the ground states are quadrat-
ically dispersing spin waves, ω ∼ kz , characterized by the
dynamical critical exponent z = 2, which is easily seen by
equating the linear τ derivative in AB with the second spatial
derivative in the δ term. For δ = 0, the dynamics changes to
z = 4. For δ > 0, the theory is more non-trivial, and there is
even a z = 1 regime (see below).

Asymptotic solubility: Physically, the absence of fluctua-
tions in the FM state suggests a saddle point approximation
may apply near to it. Indeed, a simple rescaling x→

√
κ/δ x′

and τ → κτ ′/δ2 transforms the action into suggestive form
(we defined v = −λ/κ and h′ = hκ/δ2)

S =

√
κ

δ

∫
dx′dτ ′

{
isA′B [m̂]− sign(δ)|∂x′m̂|2 + |∂2

x′m̂|2

−v|∂x′m̂|4 − h′m̂z

}
, (4)

which shows that near the critical point, when δ/κ � 1, the
action is large in dimensionless terms so that a saddle point
analysis becomes asymptotically correct on approaching the
Lifshitz point. Because |δ| appears only in the prefactor of the
action in Eq. (4), the phase diagram at the saddle point level
and only the dimensionless parameters v and h′ control the
saddle point. Note that v < 1 defines the stability region of
the theory.
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FIG. 1. Saddle point result for the magnetization m(h) for different
values of interaction parameter v, which is shown next to each curve.

The saddle point of Eq. (2) with minimum action describes
a cone (umbrella) state:

m̂sp = (ϕ cos qx, ϕ sin qx,
√

1− ϕ2), (5)

with 0 ≤ ϕ ≤ 1 and q functions of the parameters of the
action. Solutions with both sign of q are degenerate, which

reflects spontaneous breaking of reflection symmetry and chi-
ral order: ẑ · m̂sp × ∂xm̂sp = ϕ2q 6= 0. For sufficient large
field, h > hc, the solution is simply the ferromagnetic one,
with ϕ = 0. On reducing the field, there are two possible be-
haviors. For λ > −κ/4 (v < 1/4), a continuous transition
occurs at the critical field hc = h0 = δ2/(2κ). The “order
parameter” ϕ, which represents the local moment transverse
to the magnetic field, increases smoothly from zero below h0.
This corresponds to the point of local instability of the FM
phase to single magnons, which Bose condense when their
energy vanishes at h0. For λ < −κ/4 (v > 1/4), the tran-
sition occurs discontinuously at hc > h0, at which point the
ferromagnetic state is still locally stable. The order parame-
ter jumps to a non-zero value ϕc for h = hc − 0+. This is a
metamagnetic transition, described by

ϕ2
c =

2
√
v − 1

v
, hc =

δ2

8κ
√
v(1−

√
v)
, q2
c =

δ

4κ(1−
√
v)
,

(6)
which hold for 1/4 < v < 1. Due to the aforementioned scale
invariance, the metamagnetic line extends for all δ at the sad-
dle point level. The saddle point gives direct predictions for
experiment such as the magnetization m =

√
1− ϕ2 shown

in Fig. 1.
Quantum corrections: Fluctuations beyond the saddle point

have several types of effects. One innocuous effect is that of
phase fluctuations within the “cone phase”: configurations of
form of Eq. (5) with qx → qx + θ have small action when
θ(x, τ) has small space-time gradients. Fluctuations of θ are
thereby described by a free z = 1 boson theory with cen-
tral charge c = 1, which converts the long-range cone or-
der into power-law spin correlations, but preserves the chiral
order. These properties characterize a “vector chiral” phase
(VC), identified previously in the FFHC.

A more drastic effect of fluctuations is to move the phase
boundaries and even introduce new phases. We show below
that quantum fluctuations lower the energy difference between
the cone and FM states, eventually inducing a metamagnetic
endpoint. To proceed, we write the magnetization m̂ in the
co-moving system of coordinates

m̂ =

√
2− η̄η

s
[
η̄ + η

2
√
s
ê1 + i

η̄ − η
2
√
s
ê2] + (1− η̄η

s
)ê3, (7)

where the rotating dreibein êj(x) are chosen as follows:
ê1× ê2 = ê3 ≡ m̂sp. The fields η̄, η describe magnons, trans-
verse fluctuations of the magnetization. To quadratic order the
action in Eq. (2) becomes S =

∫
dτ
[∫
dx η̄∂τη +Hfluct

]
,

which shows that η̄, η are canonical Bose operators, and
Hfluc(η̄, η) is a Hamiltonian. Fourier transforming it into
momentum space shows that Hfluc contains both normal and
anomalous terms:

Hfluc =
∑
k

2Akη̄kηk +Bk(ηkη−k + η̄kη̄−k). (8)

Here coefficients Ak, Bk are functions of momentum k and
depend on parameters δ, κ, v, h and ϕ of the saddle point ac-
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tion. Diagonalization of (8) with the help of a standard Bo-
goluiubov transformation gives us the desired correction: the
zero-point energy δEcone = 1

N

∑
k{
√
A2
k −B2

k −Ak}.
We use this corrected energy to identify a metamagnetic

endpoint. A metamagnetic endpoint occurs at δ = δc if, for
δ > δc, the cone state remains higher in energy than the FM
state for all h ≥ h0, while for δ < δc, the cone state has lower
energy than the FM one for some range of fields h0 < h < hc.
Hence the endpoint is determined by the condition that the
energy of the cone state equals that of the FM state at h = h0,
i.e. ∆E = ∆E − δEcone = 0 at h = h0 where the first
term ∆E = EFM − Econe represents the saddle point energy
difference, and the last is the Bogoliubov correction.

Before analyzing this in detail, we note that from Eq. (4),
the fluctuation corrections to the energy are expected to be re-
duced from the saddle point value by a factor of

√
δ/κ, which

is assumed small for consistency of the approach. Hence they
can affect the balance between cone and FM states only when
the energy difference between the two is already small at the
saddle point level. Therefore we now focus on the regime
close to the onset of metamagnetism, and let v = 1/4 + ε
in what follows, with ε � 1. In this limit, ∆E(h0) =
256
27 κε

3(δ/κ)2.
The fluctuation correction δEcone contains a regular cutoff-

dependent part and a singular universal term. The former may
be absorbed into a renormalized coupling v → ṽ and likewise
ε. The latter represents a physically distinct contribution to the
cone state energy. For the lattice FFHC it was obtained pre-
viously in [20]. We obtain δEsing

cone = s−1
∫∞
−∞

dk
2π

100δ3ε2

κ2k2+2κδ =

(25
√

2/s)κε2(δ/κ)5/2.
Now combining the saddle point and corrections, we find

that the total energy ∆E = ∆E(h0)−δEsing
cone is seen to change

sign at δc ≈ 0.07κs2ε2, indeed indicating a metamagnetic
endpoint. Since δc � 1 with ε � 1, this is within the regime
of validity of the field theory.

FIG. 2. Stability curves (schematic). The thin dashed (blue) line
shows the critical hc field of the first order transition within the clas-
sical saddle point approximation. The wide brushed (blue) line in-
dicates hc as modified by quantum fluctuations. It crosses the thin
(black) single-magnon instability field h0 at δ = δc. The red (green)
solid lines denote the critical magnetic fields h2(h3) describing two-
(three-) magnon condensation instabilities. The h3(δ) curve is a con-
jecture.

Quantum few-body physics: Considering the above result,
we see that for δ > δc, the effective attraction between
magnons is too weak to induce collapse. Nonetheless, here
we argue that it still is strong enough to produce bound states
of a finite number of magnons, which leads to distinct multi-
polar phases in a range δc < δ < δc2, that set in at h > h0.

As we consider larger δ, the semiclassical analysis becomes
inadequate, and a full quantum treatment of the action in
Eq. (2) becomes necessary, which is daunting due to its non-
polynomial nature (implicit in the NLsM constraint). In prin-
ciple, by using Eq. (7) with êµ = x̂µ, one can expand and trun-
cate the action to O(η2n) for an exact treatment of n-magnon
states, since higher order terms, if properly normal-ordered,
annihilate these states. This leads to a quantum Hamiltonian
for bosonic fields η, η with an unconventional kinetic energy
and up to n-body momentum dependent interactions. Due to
the complexity of this problem, we have limited ourselves to
the n = 2 case. This expansion yields

H =
∑
k

εkηkηk (9)

+
1

2L

∑
kpp′

V (k, p, p′)ηk/2+pηk/2−pηk/2−p′ηk/2+p′ ,

with εk = (h+ 2κk4 − 2δk2)/s and V (k, p, p′) in [21].
One can gain some insight by focusing on the minima of

εk, which occur at k = ±q, with q =
√
δ/(2κ). We there-

fore define new fields ψa,k = η(2a−3)q+k for |k| � q and
a = 1, 2. Then, Fourier transforming back to real space, one
obtains, assuming all the scattered magnons remain near the
two minima,

H =

∫
dx
{ 2∑
a=1

ψa(ε0 −
∂2
x

2m
)ψa + (10)

+
1

2
γ1

[
(ψ1ψ1)2 + (ψ2ψ2)2

]
+ γ2ψ1ψ1ψ2ψ2

}
,

where ε0 = h/s − δ2/(2κs), m = s/8δ, γ2 = δ2(5 −
4v)/(κs2) and γ1 = δ2(1 − 4v)/(2κs2). Observe that for
v > 1/4, when the saddle point analysis found metamag-
netism, the intra-valley interaction γ1 is negative, i.e. attrac-
tive. As is well known, bosons with attractive delta-function
potential, such as described by the γ1 term in (10), undergo
collapse [20, 22, 23] – the ground state of the system is given
by the N -body bound state in which all N bosons of the sys-
tem participate. This collapse corresponds to the metamag-
netic transition. In reality an infinite collapse is prevented by
three-body interactions, and moreover the saddle point con-
dition is renormalized with increasing δ as we found above,
leading to the metamagnetic endpoint.

We can investigate renormalizations at the two-body
level from Eq. (9). In particular, taking the full disper-
sion and momentum-dependent interactions, we solve the
two-body Schrödinger equation for the minimum energy
state. The general form for such a state is |ψ, k〉 =∫
dq
2πΨ(q; k)ηk/2+qηk/2−q|0〉, where |0〉 is the boson vacuum,
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i.e. the ferromagnetic state, k is the (conserved) center of mass
momentum, and the two-magnon wavefunction obeys

(εk/2+p + εk/2−p − E)Ψ(p; k) +

∫
dp′

2π
V (k, p, p′)Ψ(p′; k)

= 0. (11)

This equation can be solved exactly [21]. We obtain the mini-
mum energy state for k = ±2q, which corresponds to a pair of
magnons from the same minima, and find the binding energy
εb = 2εq − E given by the relation

√
εb ≈

√
εb0

[
1−

(
δ

δc2

)1/2
]

+O(δ5/2), (12)

where εb0 = ε2δ3/(8κ2s3) is just the naı̈ve binding energy
one would obtain from the delta-function interaction model,
εb0 = mγ2

1/4, and the term in the brackets represents the lead-
ing correction. This defines a critical value δc2 = 128

625κs
2ε2 ≈

0.2κs2ε2, such that the two-magnon bound state disappears
for δ > δc2.

FIG. 3. Schematic phase diagram in δ − h plane. The dashed line
is the metamagnetic transition emerging from the Lifshitz point at
the origin. “FM” and “cone/VC” denote the fully polarized fer-
romagnetic and cone/vector chiral phases, respectively. Integers
n = 2, 3, 4, 5 label multipolar phases comprised of the correspond-
ing number of bound magnons. Phases with n > 2 are conjectural,
and their appearance and number in the universal regime is an open
question.

Importantly, we note that δc2 > δc, which implies that in
this interval the ferromagnetic state is unstable to two-magnon
condensation for a non-zero range of fields h > h0. In princi-
ple, we should now check for bound states of more than two
magnons. Unfortunately, we have not been technically able to
accomplish this. We speculate that in the range δc < δ < δc2,
bound states of increasing numbers of magnons appear with
decreasing δ, at thresholds δc,n, with δc < δc,n < δc,n′ for
n > n′ [24]. This would imply a sequence of distinct multi-
polar phases just below saturation in this intermediate range
of δ, as shown schematically in Fig. 3. Note that the defining
feature of the nth multipolar phase is the presence of a gap for
excitations with spin Sz < n. In one dimension, due to fluctu-
ations, there is no true multipolar condensate, and each phase

evolves smoothly from more condensate-like to spin-density-
wave-like on reducing field [6, 25]. The presence of states
with n > 2 is, as we indicated, speculative, and the physics
governing the maximum n is an interesting open problem.

Microscopic calculation of v: The crucial dimensionless
parameter v of the theory cannot be determined within our
field theory approach. We found two ways to fix its value
by comparing field theory predictions with those of compli-
mentary microscopic calculations [21]. In the first, large spin
s� 1 calculation, we use the standard spin-wave technique to
calculate the leading spin-wave corrections to the ground state
energy and the optimal spiral wave vector of the spin-s J1−J2

chain. Comparing these results with the saddle point analysis,
we find v = 3/(2s). Hence v < 1/4 for large s, and thus
metamagnetism occurs only for spin chains with s < sc = 6,
in agreement with earlier Bethe-Salpeter calculations [26, 27].

For the s = 1/2 chain, we match the value of the order
parameter jump ϕc, (6), at the metamagnetic transition to the
corresponding value of the magnetization mc = (

√
7 − 1)/3

reported in Ref. 20. This gives, via m2
c = 1 − ϕ2

c , that
vs=1/2 = 1/(1+mc)

2 ≈ 0.42. Given that 1/4 < vs=1/2 < 1,
our theory indeed predicts metamagnetism and multipolar
phases for the FFHC, in agreement with numerical observa-
tions [7].

Generalizations and Outlook: The non-linear sigma model
formulation can be easily extended to higher-dimensional Lif-
shitz points. This may provide a means to understand other
frustrated ferromagnets and ferrimagnets, including possibly
the kagomé lattice material volborthite [28, 29], which shows
signs of nematic-like behavior below an unusually-wide 1/3
magnetization plateau.
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