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Measurements of the Hall and dissipative conductivity of a strained Ge quantum well on a
SiGe/(001)Si substrate in the quantum Hall regime are reported. We analyse the results in terms
of thermally activated quantum tunneling of carriers from one internal edge state to another across
saddle points in the long range impurity potential. This shows that the gaps for different filling
fractions closely follow the dependence predicted by theory. We also find that the estimates of the
separation of the edge states at the saddle are in line with the expectations of an electrostatic model
in the lowest spin-polarised Landau level (LL), but not in the spin-reversed LL where the density
of quasiparticle states is not high enough to accommodate the carriers required.

PACS numbers: 73.20.Mf, 73.21.-b, 73.40.Hm, 73.43.Cd, 73.43.Lp

The strongest fractional quantum states have been
found in delta-doped GaAs quantum wells and het-
erostructures. These have been the cleanest samples with
the highest mobilities and yet the strength of a fractional
quantum Hall state does not appear to be connected in
a simple way with the zero magnetic field mobility of the
samples involved [1, 2].

The strength of a quantum Hall state is associated
with how rapidly the dissipative conductance drops with
temperature. This is known to be affected by the long-
range impurity potential, arising out of the ionised donors
in a semiconductor heterostructure, although describing
this effect quantitatively has proved difficult. The back-
ground potential leads to the formation of compressible
regions, which then partially screen the background po-
tential. Predicted theoretically in [3, 4], and later verified
in scanning electron transistor measurements [5], these
compressible regions are separated from the percolating
incompressible region by internal edges. The transfer be-
tween these internal edges is then the principal dissipa-
tive process at low temperatures [6, 7]. Characterising
these internal edges is not just an important challenge
for describing the quantum Hall response, but also to
the interpretation of Aharonov-Bohm interference exper-
iments at filling factor ν = 5/2 [8]. It turns out, for
example, that it is crucial to the interpretation of these
experiments to know whether any charge redistribution
associated with changing the field occurs internally (by
shifts in the local occupation of compressible regions) or
by the outer sample edges [9].

Here, we report conductivity measurements on a p-
type strained germanium quantum well. There is a clear
family of quantum Hall states in the composite fermion
(CF) series centered on ν = 1/2 [10]. Our analysis of
the data shows that the model can give a consistent fit
across all filling fractions in the CF family for the gaps
in these systems and explains why the zero field mobility
is not simply connected with the strength of the quan-

tized Hall states. The gaps are in line with the predicted
dependence on filling fraction. In addition we estimate
the typical separation at a saddle point, a, of two com-
pressible regions occupied by the same type of carrier.
As a function of the gap, these correlate well with the
separation of neighboring compressible regions contain-
ing carriers of opposite charge, which can be predicted
on the basis of an electrostatic model [11]. While the
dependence of the width parameter, a, on the gap, ∆s,
is the same for filling fractions in the lowest Landau level
(LL) above and below ν = 1/2, there is a systematic
shift to higher values for the quasihole states (ν > 1/2).
However, for states above ν > 1 where multiple LLs are
occupied, the dependence does not coincide with the pre-
dictions of the electrostatic model. We attribute this to
the need for a charge rearrangement across the incom-
pressible region, which is too large for a simple edge to
accommodate.

Our sample was grown by reduced pressure chemical
vapour deposition at the University of Warwick (sample
ID 11-289SQ1D). It is taken from the same wafer that
was reported in [12], it has a density of 2.9× 1011 cm−2

and a mobility of 1.3 × 106 cm2/Vs (with current flow
along the [110] direction). The hole effective mass of
0.073(1)me, measured from the temperature dependence
of the Shubnikov-de Haas oscillations at low field, is re-
markably similar to that of electrons in GaAs (0.067me)
and much lower than for holes in GaAs. The Dingle ratio
is 78± 2 [13, 14].

Fig. 1 shows the structure of the wafer. A reverse lin-
ear graded, strain tuning buffer [15] terminating in over-
relaxed Si0.2Ge0.8, is followed by the Ge quantum well
which is under 0.65% biaxial compressive strain. Holes
are supplied from a boron doped layer that is set back
26 nm above the quantum well. Magnetoresistance mea-
surements were performed at the National High Magnetic
Field Laboratory using static fields of up to 35 T and at
temperatures down to 26 mK. We note that results on
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Figure 1. The Hall resistance, ρxy, and dissipative response,
ρxx, at 55mK (main figure) and the dissipative response at
different temperatures [14] in the high field regime (top left).
The wafer structure is summarized in the schematic (top
right).

a similar sample grown in our laboratory have already
been reported [16] but without any discussion of the CF
family in the lowest Landau level.

Figure 1 shows field-traces of the longitudinal resis-
tance taken in a 4×4 mm square geometry at four differ-
ent temperatures with the current along the [110] direc-
tion. The Hall resistance was measured separately in a
Hall bar geometry. There are clear quantum Hall states
at fractions in the main CF sequence around ν = 1/2
and ν = 3/2. As seen in CdTe [17], there is some devia-
tion from simple activated behavior even when there are
good quantum Hall states. Around ν = 5/2 we find a
minimum on ρxx but no clear plateau at ν = 5/2. The
mobility of our sample is high for a Ge sample, but it
is still significantly less than for GaAs samples showing
such clear FQH states. For example in a p-doped GaAs
sample, with µ = 2.3 × 106 cm2/Vs (close to twice that
of our sample), there are precursor signals of states at
ν = 3/5 and at ν = 4/7 but not quantized Hall states
[18]. In n-doped GaAs no sign of the ν = 5/2 state is
visible for µ <∼ 6.7× 106 cm2/Vs [1, 2].

While the zero field mobility reflects all scattering, we
assume that it is the long-range potential of the ion-
ized donors that controls the dissipation in quantum Hall
states. Any short range scattering centres, not located
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Figure 2. Band alignment and particle flow across a typical
saddle point in the potential (top left). The blue/red regions
are compressible with nucleated QPs/QHs, while the white
region is incompressible. Dissipation occurs when excitations
move across a saddle point from a compressible region with
chemical potential, µl, to compressible region at µr. The
transfer proceeds by thermally activated tunneling across the
energy barrier, which on average is ∆s/2. The resulting loga-
rithmic conductance (with σ in units of 2(qe2)/h) at different
filling fractions is shown top right and below. For the ν = 7/5
and ν = 8/5 states, the theoretical prediction and model pa-
rameters used to describe the data are shown (the data at
ν = 8/5 have all been raised by 0.1 for clarity).

directly in the saddle points of the long range impurity
potential, will not affect the response of the quantum
Hall state. This makes clear why mobility is unlikely to
be a good indicator of strong quantum Hall states [1].

We have analysed the data using the model developed
in [7, 19]. This assumes that localized regions or puddles
of compressible regions are nucleated within the incom-
pressible quantum Hall fluid. The dissipative response is
controlled by excitations, localized in one puddle, cross-
ing to another via a saddle point in the impurity poten-
tial, see Fig. 2. The saddle points act as effective resistors
and the puddles of quasiparticles (QP) and quasiholes
(QH) act as reservoirs in a resistor network [6]. The
response is then that of the average saddle point (with
barrier height ∆s/2) [20, 21].

If the energy required to create a QP and QH near a
saddle is ∆s, the average barrier height to traverse a sad-
dle is ∆s/2 for both QPs (Esp) and QHs (Esh). In the
absence of tunneling through the saddle point, the dissi-
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Figure 3. Estimates of the gap as a function of magnetic field.
The crosses denote the estimate of the gap at each ν, ∆s. The
ovals show the energies, ∆i, estimated from the gradients in
the Arrhenius plots taken at the point of inflection for each
ν (see Fig. 2) . The solid lines are the dependence predicted
in CF theory [23] with C′ = 2 and C = 0.25, see (2). The
dashed straight lines are best linear fits. Insert: Results close
to ν = 3/2 on an expanded scale.

pative conductance per square is [2(qe)2/h] e−∆s/2kT as
predicted by Polyakov and Shklovskii [6]. Taking account
of tunneling gives a dissipative conductance per square

σ�
xx = 2

(qe)2

h
F [∆s, a/lq], (1)

where a is the typical saddle point width (see Fig. 2) and
lq is the magnetic length for QPs/QHs with fractional
charge qe [7, 14, 22] . We fit the data to the computed
form for F using the gap, ∆s, and the width parameter,
a, as free parameters.

We convert the measured minimum values of ρxx at
each filling fraction and for each temperature to equiva-
lent conductivities σxx (the Hall resistance is taken as the
corresponding quantized value). The results for ν = 7/5
are shown in Figure 2. We also show the results of the
more traditional method of assuming the Arrhenius form,
drawing a tangent to the curves at the inflection point
and identifying the gradient with an energy gap, ∆i.

The aspect ratio (width/length) of the active region of
the sample gives an overall additive constant to lnσxx
[14]. We use this as a consistency check on the model as
it should not vary significantly between filling fractions.
For the states at ν = 2/3, 2/5, 3/5, 3/7 and 4/7, the data
in Fig. 2 fitted assuming a constant aspect ratio of 1.8.
At filling fractions with small gaps, we can expect that
the effective width of the percolating incompressible re-
gion may reduce as the state is weaker. At ν = 4/9 and
ν = 5/9 the aspect ratio is reduced to 1.4 and 1.5 respec-
tively. However, we should emphasize that at these filling
fractions the states are weak (the ratio between low and
high temperature conductance is less than 1.9).

In Fig. 3 we compare the results for ∆s with the pre-
dicted dependence on magnetic field for the composite

fermion model [23]. For spin-polarised states at filling
fraction νp = p/(2p+ 1), 1± νp or 2− νp, the theory pre-
dicts that the gap in a homogeneous system, ∆h, varies
as

∆h =
C

|2p+ 1|(ln |2p+ 1|+ C ′)

e2

εl0
, (2)

where C and C ′ are dimensionless constants and l0 is the
magnetic length. Analysis of the logarithmic divergences
as p→∞ for a homogeneous system with zero width and
without LL-mixing corrections suggested C = 1.27 [23]
while comparison with exact diagonalization studies put
C ′ = 3.0 and, later, C ′ = 4.11 [24]. We have treated C
and C ′ as free parameters and compared with the values
we obtain for ∆s. The results are shown as solid lines in
Fig. 3 with C = 0.25 and C ′ = 2.

The agreement between CF theory and the estimated
gaps, ∆s, is good even at filling fractions above ν = 1.
The values of the constants C and C ′ are different from
those estimated for the homogeneous zero width case and
indicate a larger role for the logarithmic corrections to
the CF effective mass. The result (2) can be rewritten as
a formula for the effective mass via

m∗(p) = ~2

(
εl0
e2

)
ln |2p+ 1|+ C ′

C
. (3)

As expected the effective mass depends on the magnetic
length—it varies between 0.69 me at ν = 5/3 to 1.09 me

at ν = 2/3 (both have p = −2) and on p. Our results
also suggest that the dependence of the effective mass on
p is stronger than predicted for the homogeneous 2DEG
(C ′ = 2 instead of 4.1 suggested by diagonalizations of
the Hamiltonian of homogeneous systems [24]).

Although there is no microscopic model giving the typi-
cal saddle point width, a, as a function of ∆s, we assume
that it should be related to b, the width of the incom-
pressible region between two puddles (see upper left pane
in Fig. 2). We estimate b using the theory developed for
edges, which computes the electrostatic potential induced
by fixing the charge density at the incompressible value
[11]. The width, b, is determined by setting the energy
to create a quasiparticle-quasihole (QP-QH) pair equal
to the electrostatic energy gained by transferring a QP
from the low to the high density side of the incompress-
ible region. This gives b2 = 8e(e/q)∆

q π dn/dx|c where dn/dx|c is
the gradient of the carrier density at the centre of the
incompressible strip if the system were fully screening of
the background impurity potential.

In Fig. 4(a) we show a as a function of
√

∆s/q where
the ∆s are values from fits to the data. For the two fami-
lies νqp = p/(2p+1) and νqh = 1−p/(2p+1), we see that
a linear dependence on

√
∆s/q works quite well. There is

evidence of a systematic difference between the QP fam-
ily and the QH family, with the width in the QH case
slightly larger than in the QP case. A difference between
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Figure 4. (a) The saddle point width parameter, a, plotted
against

√
∆s/q (in units of K1/2), for the different CF families

(left). Dashed lines are guides to the eye. (b) Γ = ∆s −
∆i for different filling fractions. Γ reflects the reduction in
the apparent gap due to tunneling and has traditionally been
assumed independent of filling factor.

the two cases is not surprising, given that the bound-
ary of a compressible puddle is an internal edge and the
fractionally charged QP/QH is an internal edge excita-
tion. As the model does not factor in any details of the
edge state reconstruction, a small systematic difference
between the results for the two families (ν = p/(2p + 1
and ν = 1− p/(2p+ 1)) is to be expected.

In the case of the partially occupied reverse spin LL
(RSLL), Fig. 4(a) shows that a does not follow the sim-
ple CSG scaling [11]. The scaling assumes that the com-
pressible regions behave like perfect metals, i.e. that the
screening length in the puddles is short enough for the
electrostatic model to be a good approximation. This
turns out to be unlikely in the RSLL in our sample.
The theory would require that the screening electron den-
sity changes between edges of an incompressible strip by
∆n ∼ b dn/dx|c. At filling fraction, ν = 1 + p/(p + 1),
the corresponding change in number density of QPs, with
charge qe = e/(2p + 1), is ∆nQP = ∆n/q. The average
density of electrons in the RSLL is n1 = n p/(3p + 1).
This gives:

∆nQP
n1

=
∆n

n

(2p+ 1)(3p+ 1)

p
. (4)

For uncorrelated ionised donors, the typical density gra-
dient would be dn/dx|c ∼

√
n/8π/d2 [4], which would

give ∆nQP

n1
∼ 0.2 at ν = 4/3 (p=1) and 0.3 at 8/5

(p=2). These would be large density variations in a LL
and would take the system close to (or into) neighboring
CF states (in the CF model, a ratio 1/(p+1) defines the
next CF state in the hierarchy). The assumption of fully
screening metallic regions, which is implicit in the CSG
model, applies to this sample at filling fractions above
ν = 1.

Our model is not consistent with an approach, which
assumes a ν−independent broadening due to impurities.
The difference, Γ = ∆s − ∆i, between the intrinsic gap
and the slope measured in Arrhenius plots of the dissi-
pative conductance, depends on the strength of the in-

compressible state. Fig 4(b) shows the broadening pa-
rameter, Γ, which, according to our model, varies be-
tween 2.5K at ν = 7/5 and around 0.6K at ν = 2/3.
Γ is smaller the larger the intrinsic gap. On the other
hand, the dashed lines in Fig. 3(a) show that, if we fit ∆i

by a linear function of B − B(ν = 1/2) [10], we obtain
different values for the broadening and effective masses:
4.5K and 0.65me for ν < 1/2, and 3.1K and 1.1me for
ν > 1/2. We conclude that estimates of intrinsic gaps
using states of significantly different strengths on the ba-
sis of a ν−independent broadening parameter are likely
to be unreliable, see also [25].

We have reported measurements of the dissipative re-
sponse and the Hall response of a Ge quantum well in
the fractional quantum Hall regime. The results across
all filling fractions, for which FQH states are found, fit
well with the predictions of a model of thermally assisted
quantum tunneling. The model demonstrates that the
properties of the internal edge states around puddles con-
trol how a fractional quantum Hall state responds to any
slowly varying background potential. Our sample has
a high mobility for Ge but still significantly below that
for GaAs samples (both p- and n-type) but shows much
stronger quantum Hall states than would be expected
given the mobility. Our model makes clear why the mo-
bility is not likely to be a reliable measure of the sample in
the quantum Hall regime. The strength of the quantum
Hall state is determined by the strength of the long-range
impurity potential at saddle points in the potential.
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