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Dispersive shock waves and solitons are fundamental nonlinear excitations in dispersive media,
but dispersive shock wave studies to date have been severely constrained. Here we report on a novel
dispersive hydrodynamics testbed: the effectively frictionless dynamics of interfacial waves between
two high contrast, miscible, low Reynolds’ number Stokes fluids. This scenario is realized by inject-
ing from below a lighter, viscous fluid into a column filled with high viscosity fluid. The injected
fluid forms a deformable pipe whose diameter is proportional to the injection rate, enabling precise
control over the generation of symmetric interfacial waves. Buoyancy drives nonlinear interfacial
self-steepening while normal stresses give rise to dispersion of interfacial waves. Extremely slow
mass diffusion and mass conservation imply that the interfacial waves are effectively dissipationless.
This enables high fidelity observations of large amplitude dispersive shock waves in this spatially
extended system, found to agree quantitatively with a nonlinear wave averaging theory. Further-
more, several highly coherent phenomena are investigated including dispersive shock wave backflow,
the refraction or absorption of solitons by dispersive shock waves, and the multi-phase merging of
two dispersive shock waves. The complex, coherent, nonlinear mixing of dispersive shock waves and

solitons observed here are universal features of dissipationless, dispersive hydrodynamic flows.

The behavior of a fluid-like, dispersive medium that ex-
hibits negligible dissipation is spectacularly realized dur-
ing the process of wave breaking that generates coher-
ent nonlinear wavetrains called dispersive shock waves
(DSWs). A DSW is an expanding, oscillatory train of
amplitude-ordered nonlinear waves composed of a large
amplitude solitonic wave adjacent to a monotonically de-
creasing wave envelope that terminates with a packet of
small amplitude dispersive waves. Thus, DSWs coher-
ently encapsulate a range of fundamental, universal fea-
tures of nonlinear wave systems. More broadly, DSWs oc-
cur in dispersive hydrodynamic media that exhibit three
unifying features: i) nonlinear self-steepening, ii) wave
dispersion, iii) negligible dissipation (c.f. the comprehen-
sive DSW review article [1]).

Dispersive shock waves and solitons are ubiquitous ex-
citations in dispersive hydrodynamics, having been ob-
served in many environments such as quantum shocks
in quantum systems (ultra-cold atoms [2, 3], semicon-
ductor cavities [4], electron beams [5]), optical shocks
in nonlinear photonics [6], undular bores in geophysical
fluids [7, 8], and collisionless shocks in rarefied plasma
[9]. However, all DSW studies to date have been severely
constrained by expensive laboratory setups [2, 3, 5, 7] or
challenging field studies [8], difficulties in capturing dy-
namical information [2, 3, 6], complex physical modeling
[8], or a loss of coherence due to multi-dimensional in-
stabilities [2, 4] or dissipation [5, 9]. Here we report on
a novel dispersive hydrodynamics testbed that circum-
vents all of these difficulties: the effective superflow of
interfacial waves between two high viscosity contrast, low
Reynolds number Stokes fluids. The viscous fluid conduit
system was well-studied in the 1980s as a simplified model

of magma transport through the Earth’s partially molten
upper mantle [10-12] (see also the background material
in [13]). This system enables high fidelity studies of large
amplitude DSWs, which are found to agree quantitatively
with nonlinear wave averaging or Whitham theory [14—
16]. We then report the first experimental observations
of highly coherent phenomena including DSW backflow,
the refraction or absorption of solitons interacting with
DSWs, and multi-phase DSW-DSW merger. In addition
to its fundamental interest, the nonlinear mixing of meso-
scopic scale solitons and macroscopic scale DSWs could
play a major role in the initiation of decoherence and a
one-dimensional, integrable turbulent state [17] that has
recently been observed in optical fibers [18] and surface
ocean waves [19].

In our experiment, the steady injection of an intrusive
viscous fluid (dyed, diluted corn syrup) into an exterior,
miscible, much more viscous fluid (pure corn syrup) leads
to the formation of a stable fluid filled pipe or conduit
[20]. Due to high viscosity contrast, there is minimal
drag at the conduit interface so the flow is well approx-
imated by the Poiseulle or pipe flow relation D o« Q'/*4
where @ is the injection rate and D is the conduit diam-
eter. By modulating the injection rate, interfacial wave
dynamics ensue. Dilation of the conduit gives rise to
buoyancy induced nonlinear self-steepening regularized
by normal interfacial stresses that manifest as interfa-
cial wave dispersion [21, 22]. Negligible mass diffusion
implies a sharp conduit interface and conservation of in-
jected fluid. By identifying the azimuthally symmetric
conduit interface as our one-dimensional dispersive hy-
drodynamic medium, we arrive at the counterintuitive
behavior that viscous dominated, Stokes fluid dynamics
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FIG. 1: Interfacial wave breaking of two Stokes fluids causing the spontaneous emergence of coherent oscillations, a DSW. The
leading, downstream edge is approximately a large amplitude soliton whose phase speed is tied to the upstream conduit area.
The trailing, upstream edge is a small amplitude wave packet moving at the group velocity whose wavenumber is tied to the
downstream conduit area. (a) 90° clockwise rotated, time-lapse digital images (aspect ratio 10:1). (b) Space-time contour plot
of the conduit cross-sectional area from (a). Nominal experimental parameters: Ap = 0.0928 g/cm®, y; = 91.7 cP, ¢ = 0.030,

downstream flow rate Qo = 0.50 mL/min, and a_— = 2.5.

exhibit dissipationless or frictionless interfacial wave dy-
namics. This will be made mathematically precise below.

By gradually increasing the injection rate, we are able
to initiate the spontaneous emergence of interfacial wave
oscillations on an otherwise smooth, slowly varying con-
duit. See [13] for additional experimental details. Figure
1(a) displays a typical time-lapse of our experiment. At
time 0 s, the conduit exhibits a relatively sharp transition
between narrower and wider regions. Due to buoyancy,
the interface of the wider region moves faster than the
narrower region. Rather than experience folding over on
itself, the interface begins to oscillate due to dispersive
effects as shown in Fig. 1(a) at 30 s. As later times in
Fig. 1(a) attest, the oscillatory region expands while the
oscillation amplitudes maintain a regular, rank ordering
from large to small. By extracting the spatial variation of
the normalized conduit cross-sectional area a from a one
frame per second image sequence, we display in Fig. 1(b)
the full spatio-temporal interfacial dynamics as a contour
plot. This plot reveals two characteristic fronts associ-
ated with the oscillatory dynamics: a large amplitude
leading edge and a small amplitude, oscillatory envelope
trailing edge.

We can interpret these dynamics as a DSW resulting
from the physical realization of the Gurevich-Pitaevskii
(GP) problem [15], a standard textbook problem for the
study of DSWs [1] that has been inaccessible in other dis-
persive hydrodynamic systems. Here, the GP problem is
the dispersive hydrodynamics of an initial jump in con-
duit area. Although we have only boundary control of
the conduit width, our carefully prescribed injection pro-
tocol [13] enables delayed breaking far from the injection
site. This allows for the isolated creation and long-time

propagation of a “pure” DSW connecting two uniform,
distinct conduit areas. Related excitations in the con-
duit system were previously interpreted as periodic wave
trains modeling mantle magma transport [11]. As we now
demonstrate, the interfacial dynamics observed here ex-
hibit a soliton-like leading edge propagating with a well-
defined nonlinear phase velocity, an interior described by
a modulated nonlinear traveling wave, and a harmonic
wave trailing edge moving with the linear group velocity.
The two distinct speeds of wave propagation in one co-
herent structure are a striking realization of the double
characteristic splitting from linear wave theory [14].

The long wavelength approximation of the interfacial
fluid dynamics is the conduit equation [11, 22]

(a2 (ailat)z)z =0. (1)

Here, a(z,t) is the nondimensional cross-sectional area
of the conduit as a function of the scaled vertical coordi-
nate z and time ¢ (subscripts denote partial derivatives).
Both the interface of the experimental conduit system
and equation (1) exhibit the essential features of friction-
less, dispersive hydrodynamics: nonlinear self-steepening
(second term) due to buoyant advection of the intrusive
fluid, dispersion (third term) from normal stresses, and
no dissipation due to the combination of intrusive fluid
mass conservation and negligible mass diffusion [13]. The
analogy to frictionless flow corresponds to the interfacial
dynamics, not the momentum diffusion dominated flow
of the bulk. The conduit equation (1) is nondimensional-
ized according to cross-sectional area, vertical distance,
and time in units of A9 = 7TR2, Ly = Ry/v/8¢, and
To = wpi/LogApe, respectively, where Ry is the down-
stream conduit radius, € = p;/pe is the viscosity ratio

a; + (a2)z —
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FIG. 2: Comparison of observed and predicted leading edge
DSW amplitude and speed. Observations (circles), Whitham
modulation theory (solid), and numerical simulation of the
conduit equation (dashed) for (a) DSW leading edge speeds
s+ and (b) DSW leading amplitude a4+ versus downstream
area ratio a—. Nominal experimental parameters: Ap =
0.1305 g/cm®, pi = 80.4 cP (measured), i = 104 cP (fit-
ted), e = 0.0024. See [13] for fitting procedure.

of the intrusive to exterior liquids, Ap = p. — p; is the
density difference, and g is gravity acceleration. Initially
proposed as a simplified model for the vertical ascent
of magma along narrow, viscously deformable dikes and
principally used to study solitons [11, 21, 23], the con-
duit equation (1) has since been derived systematically
from the full set of coupled Navier-Stokes fluid equations
using a perturbative procedure with the viscosity ratio
as the small parameter [22]. The conduit equation (1)
was theoretically shown to be valid for long times and
large amplitudes under modest physical assumptions on
the basin geometry, background velocities, fluid compo-
sitions, weak mass to momentum diffusion, and charac-
teristic aspect ratio. The efficacy of this model has been
experimentally verified in the case of solitons [21, 23].
The study of DSWs involves a nonlinear wave modu-

lation theory, commonly referred to as Whitham theory
[14], which treats a DSW as an adiabatically modulated

periodic wave [1, 15]. Using Whitham theory and eq. (1),
key conduit DSW physical features such as leading soli-
ton amplitude and leading/trailing speeds have been de-
termined [16]. For the jump in downstream to upstream
area ratio a_, Whitham theory applied to the conduit
equation (1) predicts relatively simple expressions for the
DSW leading s; and trailing s_ edge speeds

sy =+/1+8a_—1, s_=3+3a_—3y/a_(8+a_),

(2)
in units of the characteristic speed Uy = Lo/Tp. The
leading edge approximately corresponds to an isolated
soliton where the modulated periodic wave exhibits a
zero wavenumber. Given the speed sy, the soliton am-
plitude a4 is implicitly determined from the soliton dis-
persion relation s, = [a3 (2Inay — 1) + 1]/(ay — 1)?
[21]. At the trailing edge, the modulated wave limits to
zero amplitude, corresponding to harmonic waves prop-
agating with the group velocity s = w’(k_), where
w(k) = 2a_k/(1 + a_k?) is the linear dispersion rela-
tion of eq. (1) on a background conduit area a_ and
k% = (a_ —4++/a_(8+a_))/(4a_) is the distinguished
wavenumber determined from modulation theory [16]
(see also [1]).

In Fig. 2, we compare the leading edge amplitude and
speed predictions with experiment, demonstrating quan-
titative agreement for a range of jump values a_. The
analytical theory (Whitham theory) is known to break
down at large amplitudes [16] so we also include direct
determination of the speed and amplitude from numerical
simulation of eq. (1), demonstrating even better agree-
ment. In order to obtain the reported dimensionless
speeds of Fig. 2(a), we divide the measured speeds by
Uy with p; determined by fitting the downstream con-
duit area to a Poiseulle flow relation. This enables us
to self-consistently account for the shear-thinning prop-
erties of corn syrup. All the remaining fluid parame-
ters take their nominal, measured values. The deviation
between experiment and theory at large jump values is
consistent with previous measurements of solitons, where
the soliton dispersion relation was found to underpredict
observed speeds at large amplitudes [21] (see also [13]).

In addition to single DSWs, our experimental setup
allows us to investigate exotic, coherent effects predicted
by eq. (1) for the first time. For example, backflow is
a feature of dispersive hydrodynamic systems whereby a
portion of the DSW envelope propagates upstream. This
feature occurs here when the group velocity of the trail-
ing edge wave packet is negative. From the expression
for s_ in (2), we predict the onset of backflow when a_
exceeds 8/3. In Fig. 3, we utilize our injection proto-
col to report the observation of this phenomenon in the
viscous conduit setting (see [13] for video). Waves with
strictly positive phase velocity are continually generated
at the trailing edge but the envelope group velocity is
negative. We estimate the crossover to backflow for the
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FIG. 3: Time-lapse images (aspect ratio 1:1) of large ampli-
tude wave breaking leading to upstream propagation of the
DSW trailing edge envelope: DSW backflow. Nominal ex-
perimental parameters: Ap = 0.0983 g/cm?®, u; = 93.5 cP,
€ =0.029, a— =4, and Qo = 0.50 mL/min.

experiments reported in Fig. 2 at a_ ~ 3, consistent with
a slightly larger crossover than theory (8/3) due to sub-
imaging-resolution of small amplitude waves.

The ease with which DSWs and solitons can be created
in this viscous liquid conduit system enables the investi-
gation of novel coherent, nonlinear wave interactions. In
Fig. 4, we report soliton-DSW and DSW-DSW interac-
tions from our conduit experiment (see [13] for videos).
As in previous experiments [21, 23], an isolated conduit
soliton is created by the pulsed injection of fluid on top
of the steady injection that maintains the background
conduit. Figures 4(a,b) depict the generation of a DSW
followed by a soliton. Because solitons propagate with
a nonlinear phase velocity larger than the linear wave
phase and group velocities [21], the soliton eventually
overtakes the DSW trailing edge. The soliton-DSW in-
teraction results in a sequence of phase shifts between
the soliton and the crests of the modulated wavetrain.
The soliton emerges from the interaction with a signifi-
cantly increased amplitude and decreased speed due to
the smaller downstream conduit upon which it is prop-
agating. The initial and final slopes of soliton propaga-
tion in Fig. 4(b) demonstrate that the soliton has been
refracted by the DSW. Meanwhile, the DSW experiences
a subtle phase shift and is otherwise unchanged.

The opposite problem of a soliton being overtaken by
a DSW is displayed in Fig. 4(c). After multiple phase
shifts during interaction, the soliton is slowed down and
effectively absorbed within the interior of the DSW, while
the DSW is apparently unchanged except for a phase shift
in its leading portion. Such behavior is consistent with
the interpretation of a DSW as a modulated wavetrain
with small amplitude trailing waves that will always move
slower than a finite amplitude soliton.

4

Figure 4(d) reveals the interaction of two DSWs. The
interaction region results in a series of phase shifts due
to soliton-soliton interactions that form a quasiperiodic
or two-phase wavetrain as shown in the inset. This non-
linear mixing eventually subsides, leaving a single DSW
representing the merger of the original two. The trailing
DSW has effectively been refracted by the leading DSW.

We can interpret the soliton and DSW refraction as
follows. First, consider the overtaking interaction of
two DSWs. Denote the midstream and upstream con-
duit areas a; < a9 relative to the downstream area
ap = 1. Equation (2) implies the leading edge speeds
of the first and second DSWs are s; = /1 +8a; — 1,
s2 = a1(y/9 + 8(az — 1)/a1 — 1). Motivated by previous
DSW interaction studies [24], we assume merger of the
two DSWs and thus obtain the leading edge speed of the
merged DSW s,,, = 44/%(a; + a2) — 1—1 connecting con-
duit areas ag to as. One can verify the interleaving prop-
erty s1 < $m, < S2, demonstrating the refraction (slowing
down) of the second DSW. If we treat the isolated soliton
as the leading edge of a DSW, then we obtain the same
result for soliton-DSW refraction.

Viscous liquid conduits are a model system for the co-
herent dynamics of one-dimensional superfluid-like media
with microscopic-scale fluid dynamics [12], mesoscopic-
scale solitons [23] and macroscopic-scale DSWs as funda-
mental nonlinear excitations. Interaction of DSWs and
solitons suggest that soliton refraction, absorption, multi-
phase dynamics, and DSW merging are general, universal
features of dispersive hydrodynamics. The viscous liquid
conduit system is a new environment in which to inves-
tigate complex, coherent dispersive hydrodynamics that
have been inaccessible in other superfluid-like media.
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