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Macroscopic Quantum Superposition in Cavity Optomechanics

Jie-Qiao Liao∗ and Lin Tian†

School of Natural Sciences, University of California, Merced, California 95343, USA

Quantum superposition in mechanical systems is not only a key evidence of macroscopic quantum
coherence, but can also be utilized in modern quantum technology. Here we propose an efficient
approach for creating macroscopically distinct mechanical superposition states in a two-mode op-
tomechanical system. Photon hopping between the two cavity modes is modulated sinusoidally. The
modulated photon tunneling enables an ultrastrong radiation-pressure force acting on the mechan-
ical resonator, and hence significantly increases the mechanical displacement induced by a single
photon. We study systematically the generation of the Yurke-Stoler-like states in the presence of
system dissipations. We also discuss the experimental implementation of this scheme.

PACS numbers: 42.50.Wk, 42.50.Pq, 42.50.Dv

Introduction.—Quantum superposition [1] is at the
heart of quantum theory and is often considered a signa-
ture to distinguish the quantum from the classical world.
To date quantum superposition has been observed in var-
ious physical systems [2], such as electronic [3–5], pho-
tonic [6–9], and atomic or molecular systems [10, 11],
ranging from microscopic systems to mesoscopic devices.
Nevertheless, it would be desirable to observe quantum
superposition in macroscopic mechanical systems with up
to 1010 atoms [12]. It can help us understand the funda-
mentals of quantum theory [13], such as quantum deco-
herence and quantum-classical boundary in the presence
of gravity [14], and has wide applications in quantum
information processing with continuous variables [9].

Recent advances in microfabrication provide the pos-
sibility of producing high-Q mechanical resonators [15].
These progresses pave the way for observing and uti-
lizing quantum effects in macro-sized mechanical sys-
tems [16–23]. Great efforts have been devoted towards
controlling the mechanical motion in optomechanics [24–
26] and nanomechanics [27, 28]. However, it remains a
challenge to generate macroscopically distinct superposi-
tion states [29] in mechanical resonators [30–39]. Deco-
herence by quantum and thermal fluctuations can often
destroy such superposition. Moreover, the natural me-
chanical displacement induced by a single photon in op-
tomechanical systems is proportional to the ratio of the
coupling rate to the mechanical frequency [32]: g0/ωM

[cf. Eq. (1)], which is of the order of 10−5 - 10−2 in
realistic systems [26]. To distinguish the single-photon
mechanical displacement from its zero-point fluctuation,
the ultrastrong coupling condition g0 > ωM needs to be
satisfied [32].

In this Letter, we propose an efficient approach for
creating superposition of large-amplitude coherent states
in a two-mode optomechanical system by introducing
a sinusoidally-modulated photon hopping between the
two cavities. This modulated photon tunneling induces
a near-resonant radiation-pressure force acting on the
mechanical resonator, with an effective detuning much
smaller than the original mechanical frequency, and

hence increases the mechanical displacement generated
by a single photon. One merit of this method is that
the fidelities of the generated mechanical states are not
affected by the decay of cavity photons. This feature
enables the possibility to observe distinct mechanical su-
perposition states in practical systems.
The system.—Consider a two-mode optomechanical

system that consists of a free (left) cavity coupled to an
optomechanical (right) cavity via a modulated photon-
hopping interaction. The system is described by the
Hamiltonian (~ = 1),

Ĥ(t) = ωc(â
†
LâL + â†RâR)− ξω0 cos(ω0t)(â

†
LâR + â†RâL)

+ωM b̂
†b̂ − g0â

†
RâR(b̂+ b̂†), (1)

where âL(R) and b̂ are the annihilation operators of the
left (right) cavity mode and the mechanical mode, with
resonant frequencies ωc and ωM , respectively. The pa-
rameters ω0 is the modulation frequency, and ξ is the
dimensionless modulation amplitude of photon hopping
between the two cavities. The g0 is the magnitude of
the single-photon optomechanical coupling between the
right cavity and the mechanical mode. Similar two-mode
optomechanical systems have been proposed for studying
quantum optics and quantum information missions [40–
44].
In a rotating frame defined by the transformation op-

erator T̂ (t) = V̂1(t)V̂2(t) with V̂1(t) = exp{−i[ωc(â
†
LâL +

â†RâR) + ωM b̂
†b̂]t} and V̂2(t) = exp[iξ sin(ω0t)(â

†
LâR +

â†RâL)], and under the condition |δ|, g0/2 ≪ ω0, ωM , we
can obtain an effective Hamiltonian by the rotating-wave
approximation (RWA) as [45]

ĤRWA(t) = g(â†LâL − â†RâR)(b̂e
−iδt + b̂†eiδt). (2)

Here g = g0J2n0
(2ξ)/2 is the normalized coupling con-

stant under a selected integer n0 and δ = ωM − 2n0ω0 is
a modulation-induced detuning, where Jn(z) is the Bessel
function of the first kind, and n0 corresponds to the near
resonance term in the Jacobi-Anger expansions of the si-
nusoidal factor in V̂2(t).
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The Hamiltonian (2) describes a driven harmonic os-

cillator with an effective driving force g〈(â†LâL − â†RâR)〉
on a mechanical quadrature that rotates at a frequency δ.
Under this form, the maximum mechanical displacement
induced by a single photon is 2g/|δ|, which, by choos-
ing proper ξ and δ, could be much larger than the dis-
placement 2g0/ωM [32] in the single-cavity case. The
resonance driving effect can be seen more clearly by in-
troducing the symmetric and asymmetric modes of the
two cavities [45]: â± = (âL ± âR)/

√
2. In the represen-

tation of â±, the frequencies of modes â± are modulated
by periodic functions with frequency ω0, and hence the
Floquet sideband modes (with frequencies ωc +mω0 for
integers m) will assist the transitions of the system. As
a result, we can choose a proper ω0 such that the con-
ditional displacement process becomes resonant or near-
resonant and other processes are far-off-resonant. The
physical picture can also be understood in the time do-
main [45]. By hopping a single photon into and out of
the right cavity at proper time, the mechanical effect
of the single photon will be amplified because the dis-
placement effect can be accumulated when the driving
force and the mechanical oscillation are in phase. At the
same time, modulation sidebands are designed to sup-
press other parametric processes and hence an enhanced
radiation-pressure interaction can be obtained.
Generation of Yurke-Stoler-like states.—To generate

mechanical superposition states, we consider an initial
state |ψ(0)〉 = 1√

2
(|1〉L|0〉R + |0〉L|1〉R)|0〉M , where |n =

0, 1〉L(R) are cavity-field Fock states, and |0〉M is the me-
chanical ground state prepared via ground state cool-
ing [20–22]. Applying the propagator associated with
ĤRWA(t) on this initial state, followed by the transfor-
mation T̂ (t), we derive the state

|ψ(t)〉 = eiϑ√
2
[|1〉L|0〉R|ϕL(t)〉M + |0〉L|1〉R|ϕR(t)〉M ], (3)

where ϑ(t) = −(ωc − g2/δ)t − (g2/δ2) sin(δt) is a
global phase factor. The two states |ϕL(t)〉M =
cos(µ/2)|β(t)〉M + i sin(µ/2)| − β(t)〉M and |ϕR(t)〉M =
(|ϕL(t)〉M )|β↔−β are Yurke-Stoler-like states [58], which
are quantum superposition of coherent states | ± β(t)〉M ,
where β(t) = [−2ig sin(δt/2)/δ]e−i(ωM−δ/2)t and µ(t) =
2ξ sin(ω0t). For the resonant case δ = 0, we have
βres(t) = −igt exp(−iωM t). Equation (3) describes a
three-mode entangled state which involves two cavity
modes and a mechanical mode. To generate mechani-
cal superposition states |ϕL(R)(t)〉M , we need to measure
the states of the cavity field.
The maximum coherent amplitude, |β|max = 2g/δ, is

controllable by tuning the two parameters ξ and ω0 based
on the relations g = g0J2n0

(2ξ)/2 and δ = ωM − 2n0ω0.
We choose proper n0 and optimal ξ to reach peak values
of the Bessel function J2n0

(2ξ), and tune the modulation
frequency ω0 such that the value of δ can be changed con-
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FIG. 1. (Color online) (a) The maximum amplitude |β|max

versus δ/g0 at ξ = 1.5271 and 4.9847, which correspond to
the peak values of the Bessel function J2(2ξ), as shown in the
inset. (b) Time dependence of sin(δt/2) and tan[µ(t)/2] near
the positions that give the large oscillation amplitude and the
equal probability superposition in states |ϕL(R)(t)〉M , where
ωM/δ = 80, n0 = 1, and ξ = 1.527.

tinuously. In Fig. 1(a), we plot |β|max as a function of δ
when the first two peak values of J2(2ξ) (with n0 = 1) are
taken (inset). A macroscopically distinct coherent ampli-
tude can always be obtained by choosing δ < 2g such that
|β|max > 1 and then |〈−β|β〉| ≪ 1. In this case, the two
coherent states become approximately distinguishable in
phase space by proper quadrature measurements [58, 59].

The amplitude |β| = (2g/δ)| sin(δt/2)| reaches its
maximum values at times tm = (2m + 1)π/δ [i.e.,
sin(δtm/2) = ±1] for non-negative integers m. Mean-
while, the relative probability amplitudes of the states
|ϕL(R)(t)〉M depend on the time through µ(t). To observe
strong evidence of quantum interference, one expects that
the two components | ± β(t)〉M appear with comparable
probabilities. This leads to µ(τn) = 2ξ sin(ω0τn) ≈ (n +
1/2)π (i.e., tan[µ(τn)/2] ≈ ±1) for non-negative integers
n. Near a given value of tm, there are many τn satisfying
the probability requirement because of ω0 ≫ δ. Hence we
can choose proper time windows τn such that |β(τn)| > 1.
In Fig. 1(b), we plot the function sin(δt/2) and show the
function tan[µ(t)/2] around the time t0 = π/δ. We can
see that around t0, there are many values of time satisfy-
ing the two requirements at the same time. In addition,
the timing period of the measurement is slower than the
periodic oscillation of the mechanical mode because of
ω0 ≈ ωM/2. In realistic experiments, one can turn off
the photon hopping at the detection time td (the photon
detection time, one of τn around t0), then the evolution
of the system can be approximated as a free evolution
because the bare optomechanical coupling strength g0 is
much smaller than ωM . As a result, a wider time window
can be obtained for implementing proper measurements
for the cavities and the mechanical mode.

The above analyses show a trade-off between the dis-
placement amplitude |β|max = 2g/δ and the state gen-
eration time t0 = π/δ. We pursue a large |β|max for
macroscopic superposition and a small t0 for reducing
the impact of the dissipations. In realistic simulations,
we should choose a proper δ such that |β|max satisfies
the requirement of macroscopicity and t0 is as small as
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FIG. 2. (Color online) (a) The probability PL(t) and (b)
the fidelity FL(t) versus δt at selected values of the cavity-
field decay rate γc [insets: the probability PL(R)(td) and the
fidelity FL(R)(td) at time td versus γc/g0]. (c) The Wigner
function WL(η) (with η = ηr + iηi) and (d) the probability
distribution of the rotated quadrature operator PL[X(θ0)] for

the state ρ̂
(L)
M

(td). Other parameters are ωM/g0 = 20, n0 = 1,
ξ = 1.5271, δ = g, γM/g0 = 0.0001, and nth = 4.

possible. It is also worth mention that the detection time
can be shortened by utilizing the upslope rather than the
peak of the amplitude function | sin(δt/2)| with a smaller
δ. For example, to obtain a displacement of |β|max = 2,
the time for the resonant case δ = 0 is tres = 2/g, which
is shorter than t0 = π/g for the case δ = g [45].
Effects of dissipations.—To study the environmental

fluctuation effects on the state generation scheme, we nu-
merically simulate the state generation in the open sys-
tem case, in which the evolution of our system is governed
by the quantum master equation [45]

˙̂ρ = i[ρ̂, Ĥ(t)] + γcD[âL]ρ̂+ γcD[âR]ρ̂

+γM (nth + 1)D[b̂]ρ̂+ γMnthD[b̂†]ρ̂, (4)

where D[ô]ρ̂ = ôρ̂ô† − (ô†ôρ̂ + ρ̂ô†ô)/2 is the standard
Lindblad superoperator for photon and phonon damp-
ings, γc and γM are the damping rates of the cavity
fields and the mechanical mode, respectively, and nth

is the thermal phonon occupation number. We numer-
ically solve the master equation and calculate the re-

duced density matrix ρ̂
(L)
M (t) [ρ̂

(R)
M (t)] of the mechani-

cal mode [45], the probability PL(R)(t) of the photon
in the left (right) cavity, and the fidelity Fs=L(R)(t) =

M〈ϕs(t)|ρ̂(s)M (t)|ϕs(t)〉M between the generated mechani-
cal states and the target states.
In Fig. 2(a), we show the time dependence of the prob-

ability PL(t) at selected values of the cavity-field decay
rate γc. Note that PR(t) has similar pattern as PL(t)
except for a slight oscillation [hereafter we only display
PL(t) and FL(t) for concision]. We see that PL(t) has

an approximate exponential decay envelop with the cor-
responding γc and slight oscillations. We also show the
probabilities PL(td) and PR(td) at time td as a function of
γc (inset). The curves indicate that PL(R)(td) decreases
with the increase of γc. About the fidelity, our numeri-
cal results show that the fidelities FL(t) and FR(t) have
similar pattern, and that the fidelities are independent of
the decay rate γc, as shown in both the dynamics [panel
(b)] and the fidelity at time td (inset). Here the negligible
difference between FL(td) = 0.943 and FR(td) = 0.939 is
caused by the RWA and it will disappear gradually with
the increase of ωM/g0. In the presence of photon dissipa-
tion, the photon could leak out of the cavities before the
measurement. However, the normalization of the den-
sity matrices after the measurement ensures that in the
selected experiments the photon remains in the cavities.
Hence the fidelity of the generated state is not affected
by photon decay.

To evaluate the quantum coherence and interference

effects in the generated superposition states ρ̂
(L)
M (td) and

ρ̂
(R)
M (td), we examine the Wigner function Ws=L(R)(η) =
2
πTr[D̂

†(η)ρ̂
(s)
M (td)D̂(η)(−1)b̂

† b̂] [60], where D̂(η) =

exp(ηb̂† − η∗b̂) is the displacement operator. It can be
seen from the relation |ϕR(td)〉M = (|ϕL(td)〉M )|β↔−β

that the Wigner function WR(η) should be a rotation
of WL(η) by π about the origin in phase space. We
perform the simulations with the parameters in Fig. 2
and find that there is also a negligible difference between
WR(η) and the π-rotated WL(η). The difference disap-
pears gradually with the increase of ωM/g0. We also
find that the Wigner functions are independent of the
cavity-field decay rate, in accordance with the fidelities.
In Fig. 2(c) we display the Wigner function WL(η) of the

state ρ̂
(L)
M (td). We see obvious interference evidence in

this Wigner function.

The quantum superposition properties can also be
seen in the probability distribution Ps=L(R)[X(θ)] =

M〈X(θ)|ρ̂(s)M (td)|X(θ)〉M of the rotated quadrature opera-

tor X̂(θ) = (b̂e−iθ+ b̂†eiθ)/
√
2 [61], where |X(θ)〉M is the

eigenstate of X̂(θ): X̂(θ)|X(θ)〉M = X(θ)|X(θ)〉M . In
Fig. 2(d), we plot the probability distributions PL[X(θ0)]
and PR[X(θ0)] as functions of X(θ0). Here the rotation
angle is chosen as θ0 = arg[β(td)] − π/2, which means
that the quadrature direction is perpendicular to the link
line between the locations of the two superposed coher-
ent amplitudes. The interference is maximum in this
direction because the two coherent states are projected
onto the quadrature such that they overlap exactly. The
oscillation in the curves is a distinct evidence of the quan-
tum interference between the superposition components.
We notice that PL[X(θ0)] and PR[X(θ0)] are approxi-
mately symmetry to each other about the vertical axis
X(θ0) = 0, in accordance with the negligible difference
between FL(t) and FR(t).
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FIG. 3. (Color online) The fidelity FL(t) versus δt at selected
values of (a) the mechanical decay rate γM/g0 and (b) the
thermal phonon occupation number nth [insets: the fidelity
FL(R)(td) at time td versus γM/g0 and nth]. The probability
distribution of the rotated quadrature operator PL[X(θ0)] of

the state ρ̂
(L)
M

(td) at selected values of (c) γM/g0 and (d) nth.
Other parameters are ωM/g0 = 20, n0 = 1, ξ = 1.5271, δ = g,
and γc/g0 = 0.2.

We also investigate the influence of mechanical noise
on the state generation. Our numerical simulations verify
that the probabilities PL(t) and PR(t) are independent
of γM and nth. On the contrary, the mechanical dissipa-
tions affect the fidelities FL(t) and FR(t). In Figs. 3(a)
and 3(b), we show the dynamics of the fidelity FL(t) at
selected values of γM and nth, respectively. We can see
FL(t) becomes worse for larger values of γM and nth.
In addition, the fidelities FL(td) and FR(td) at time td
decrease with the increase of γM and nth (insets). In
Figs. 3(c) and 3(d), we plot the probability distribution

PL[X(θ0)] for the state ρ̂
(L)
M (td) with the parameters in

panels (a) and (b), respectively (we can know PR[X(θ0)]
from the approximate symmetry between PL[X(θ0)] and
PR[X(θ0)]). Here we can see that the oscillatory feature
of PL[X(θ0)] disappears gradually with the increase of
γM and nth. These results imply that mechanical dis-
sipations will destroy the quantum coherence and inter-
ference effects in the generated mechanical superposition.
In our simulations, quantum interference evidence can be
seen, and good fidelities (> 0.9) can be obtained.

Discussions.—Our state generation approach is gen-
eral and it can be principally implemented in various op-
tomechanical setups. Below we focus our discussions on
electromechanical systems with cavities in the microwave
regime. For such systems, the photon hopping between
superconducting resonators can be realized via Josephson
junction coupling [62]. The initial Bell state of the cavity
fields can be prepared by superconducting qubit, as real-
ized in circuit-QED systems [63, 64]. In particular, a non-

perfect photon loading (i.e., containing the zero-photon
component) does not affect the fidelity but decreases the
success probability of the generated mechanical states be-
cause all the couplings will be frozen when there are no
photons in the two cavities. The photon states in the su-
perconducting resonators can be measured via supercon-
ducting quits [65]. In addition, the generated mechanical
superposition states can be measured by the technique
of quantum state reconstruction [66–68]. We use another
cavity mode (in the same resonator) to build a connec-
tion between the mechanical mode and the output field.
By detecting the quadrature of the output field, we can
obtain the information of the mechanical states [45].

The parameter conditions for implementation of this
scheme are: g0 ≪ ωM , the ratio g0/γc should be mod-
erately larger than 1 for a high success probability [for
example g0/γc = 5 - 10 corresponds to the success proba-
bility 0.08 - 0.285], and nth ≪ g0/(4πγM ). Below we ana-
lyze the conditions in detail [45]. (i) For state generation
purpose, we choose δ < 2g ≪ ωM , then the RWA condi-
tion can be simplified as g0 ≪ ωM , which is in consistence
with the current experimental situation [26]: g0/ωM is of
the order of 10−5 - 10−3. (ii) The photon decay does
not affect the fidelity, but it affects the probability by
P ≈ e−4πγc/g0 at δ = g. Currently, the value of g0/γc
is 10−4 - 10−2 [25]. This value can be increased by ei-
ther increasing g0 or decreasing γc. In electromechanical
systems, γc = 2π × 170 kHz [69] and γc = 2π × 118
kHz [70] have been reported. The value of γc can be
further decreased to be dozens of kilohertz [71]. The
largest value of g0 reported in electromechanics is 2π×460
Hz [69], and theoretic estimations indicate that it can
reach megahertz by utilizing the nonlinearity in Joseph-
son junction [72, 73]. Therefore, g0/γc > 5 should be ac-
cessible in the near future. In particular, in the resonant
case δ = 0 and at |β|max = 1, the success probability can
be improved to be P ≈ e−4γc/g0 , which takes P = 0.14 -
0.45 for g0/γc = 2 - 5. (iii) The thermal phonon number
nth should be small such that the state generation time
is much shorter than the characteristic coherence time of
the phonons, i.e., td ≈ 4π/g0 ≪ 1/(γMnth), which leads
to nth ≪ g0/(4πγM ). Currently, the ratio g0/γM is 101

- 102 [26] (this value can be increased to 104 when g0 is
increased as described above). In low-temperature en-
vironment, nth < 30 can be obtained. For example, at
T = 10 mK [70], we have nth ≈ 20 at ωM = 2π×10 MHz.
Therefore the condition nth ≪ g0/(4πγM ) can be satis-
fied in electromechanics. Based on the above discussions,
we suggest the parameters as: ωc = 2π× (5 - 10) GHz,
γc = 2π× (25 - 200) kHz, ωM = 2π×10 MHz, γM = 2π×
(50 - 500) Hz, and g0 = 2π × 500 kHz, which are consis-
tence with the values used in our simulations [45].

Conclusions.—We have proposed an efficient method
for creating macroscopically distinct superposition states
in a mechanical resonator. This method is based on the
introduction of a modulated photon-hopping interaction
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in a two-mode optomechanical system to produce large
effective single-photon optomechanical coupling. Numer-
ical simulations demonstrate that our method works well
in the presence of dissipations, and can be realized in a
wide parameter range.
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Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O.
Painter, Nature (London) 478, 89 (2011).
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