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Single top production processes at hadron collider provide information on the relation between the
top quark and the electroweak sector of the standard model. We compute the next-to-leading order
QCD corrections to the three main production channels: t-channel, s-channel and tW associated
production, in the standard model including operators up to dimension-six. The calculation can be
matched to parton shower programs and can therefore be directly used in experimental analyses.
The QCD corrections are found to significantly impact the extraction of the current limits on
the operators, because both of an improved accuracy and a better precision of the theoretical
predictions. In addition, the distributions of some of the key discriminating observables are modified
in a nontrivial way, which could change the interpretation of measurements in terms of UV complete
models.

Introduction. At high-energy colliders, physics be-
yond the standard model (SM) is searched for either by
looking for evidence of new particles or for deviations in
the predicted interactions between the SM particles. In
the latter effort the top quark plays a special role: thanks
to its large mass it can naturally probe high scales and
in particular the electroweak symmetry breaking sector.
A general theoretical framework where the experimen-
tal information on the interactions and possible devia-
tions can be consistently and systematically interpreted
is provided by the SM effective field theory (SMEFT)
approach [1–3]. The SMEFT Lagrangian corresponds to
that of the SM augmented by higher-dimensional opera-
tors that respect the symmetries of the SM. It provides
a powerful approach to identify observables where devi-
ations could be expected in the top sector [4–6]. Besides
and more importantly, it allows a global interpretation
of measurements coming from different processes and ex-
periments [7–10], which can be consistently evolved up to
new physics scales, and provide hints to specific models
at high scales.

Given the results of the LHC Run-I [11], expectations
from Run-II on the attainable precision of the top-quark
couplings are very high. Theoretical predictions that are
at least as accurate and precise as the experimental pro-
jections are thus required. This motivates the calculation
of higher-order corrections. In this work, we focus on
the single-top production processes. At the LHC, single-
top production proceeds through three main channels: t-
channel, s-channel and tW associated production. They
are ideal for probing the top-quark couplings to the elec-
troweak sector of the SM, and can provide key and com-
plementary information to that coming from top-quark
decay. To this aim we promote the single-top predic-
tions, for the first time, to NLO in QCD in the SMEFT,
and study their impact on the interpretation of measure-
ments.

The main results of this work can be summarized as
follows. First, we show that QCD corrections not only
affect total cross sections and reduce their uncertainties,

but also impact the distributions of key observables, in
such a way that the interpretation of possible deviations
from the SM would lead to quite different UV complete
models. Moreover, these corrections cannot be captured
by either the K-factors or the renormalization group
(RG) improvements of the Wilson coefficients. Second,
we demonstrate that a new type of scale uncertainty in
EFT, coming from the running and mixing of dimension-
six terms, needs to be considered and can be reduced
by including QCD corrections. Finally, by matching our
NLO computation to a parton shower (PS) program, pre-
dictions can be obtained through an event generator that
can be used directly in experimental simulations, to de-
sign optimized analyses that can maximize the sensitivity
to new physics.

Effective operators. In the EFT approach de-
viations from the SM are captured by effective opera-
tors. Up to dimension six, four operators are relevant
[4, 5, 12]:
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O
(3)
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Iqs)(Q̄γ
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Here qr and qs are the quark doublet fields in the first
two generations, while Q is in the third generation. r, s
are flavor indices. ϕ is the Higgs doublet. gW , gY and gs
are the SM gauge coupling constants. yt is the top-quark
Yukawa coupling, defined by its pole mass. The effective
Lagrangian is:

Leff = LSM +
∑
i

Ci
Λ2
Oi + h.c. (5)

where Λ is the expected scale of new physics. Ci is the
coefficient to parametrize the deviation from Oi. In this
work we assume flavor universality in the first two gen-

erations, defining O
(3)
qQ = O

(3)
qQ,11 +O

(3)
qQ,22. Dimension-six
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operators affect all three channels. Corresponding dia-
grams are shown in Figure 1.

FIG. 1. Representative leading order (LO) diagrams for all
three single-top channels. Vertices with a black dot can be

modified by O
(3)
φQ and OtW , while that with a square is mod-

ified by OtG. The last diagram comes from O
(3)
qQ.

The operators OtG and OtW have non-zero anomalous
dimensions at O(αs), given by [13–16]

γ =
2αs
π

(
1
6 0
1
3

1
3

)
(6)

This matrix controls the running and mixing of the oper-
ators and can be used to evolve them from scale Λ down
to the scales of the measurements.

Calculation. The NLO automation is implemented
and validated in the MadGraph5 aMC@NLO frame-
work [17], with the help of a series of packages, in-
cluding FeynRules and NLOCT [18–24]. An UFO
model is built at NLO, allowing for simulating a variety
of processes important for top-coupling measurements.
In this work we only focus on single-top processes, but
other promising (and more complicated) channels, such
as tt̄Z/W/γ and tjZ/γ, are all made available at NLO in
EFT with PS. In Ref. [25] we have discussed the phys-
ical results for tt̄Z/W/γ processes. More details of this
implementation will be presented in a separate work [26].

We adopt MS with five-flavor running in αs with the
top-quark subtracted at zero momentum transfer [27].
Additional contributions to top-quark and gluon-field
renormalizations and αs renormalization from OtG are
included [28]. For operator coefficients we use MS sub-
traction, with

C0
i → ZijCj(µ

′)

=

[
1+

1

2
Γ(1 + ε)

(
4πµ2

µ′2

)ε
1

εUV
γ

]
ij

Cj(µ
′) (7)

where the anomalous dimension matrix γ is given in
Eq. (6). UV counterterms needed in this work are com-
puted using the above information. Note that with
Eq. (7) the operators will run with µ′ separately from
the running of αs. This allows for dynamical renormal-
ization scale to be adopted without having to run the
operator coefficients.

Results are presented in terms of operators defined at
µ′ = mt, i.e. the log terms from high scale, log (Λ/mt),
are already resummed by evolving operators down to this
scale using Eq. (6). Thus the NLO corrections presented

here do not include any of such large log terms, and can-
not be captured by the RG equations.

Total cross sections. Cross sections, obtained at
LO and NLO, can be parametrized as

σ = σSM +
∑
i

1 TeV2

Λ2
Ciσ

(1)
i +

∑
i≤j

1 TeV4

Λ4
CiCjσ

(2)
ij + . . .

We work up to order 1/Λ2, and present results for σ
(1)
i ,

the interference between an operator Oi and the SM. We
use NNPDF2.3 parton distributions [29]. Input parame-
ters are

mt = 172.5 GeV mZ = 91.1876 GeV (8)

α(mZ) = 1/127.9 GF = 1.16637× 10−5GeV−2 (9)

Central renormalization and factorization scales are fixed
at µR = µF = mt. To estimate theoretical uncertainties
due to missing higher-orders we perform variations with
nine combinations of (µR, µF ), where µR,F can take val-
ues mt/2, mt and 2mt.

Total cross sections (including top and anti-top) at
LHC 13 TeV are presented in Figure 2. We plot the

ratio between the interference cross section, σ
(1)
i , and

SM NLO cross section, ri =
∣∣∣σ(1)
i

∣∣∣ /σNLOSM , for individual

operators Oi, in all three channels. The ratio ri illus-
trates how sensitive a process is to a certain operator,
and can be interpreted as the signal over background ra-
tio. In the plot, scale uncertainties from the numerator
are given, and in the lower panel we show the K-factor
of each operator contribution. Improved accuracy is re-
flected by the K-factors, typically ranging from ∼ 10% to
∼ 50%, and improved precision is reflected by the signif-
icantly reduced scale uncertainties. Furthermore, most
NLO results are outside of the uncertainty range of cor-
responding LO results, indicating that QCD corrections
are essential for a correct interpretation of measurements
in terms of operators. For comparison, at 8 TeV the t-
channel has been measured at better than ∼ 10% level
[30, 31], and the t+W channel is at about 20% [32]. At
the high-luminosity LHC the t-channel can reach ∼ 4%
[33], while the s-channel may reach ∼ 15% [34]. NNLO
approximate QCD corrections are available for the SM
predictions, and corresponding theoretical uncertainties
are at the percentage level [35].

NLO corrections already affect current bounds on the
coefficients of the dimension-six operators. For illustra-

tion we perform two-operator fits, for (O
(3)
φQ, OtW ) and for

(O
(3)
φQ, O

(3)
qQ), using cross sections available at the LHC at

8 TeV [30–32, 36] with the state-of-the-art SM prediction
[35] and NLO EFT predictions from this work. Limits
are improved thanks to better accuracy and precision,
and can be clearly seen in Figure 3. For comparison we
also show current limits on OtW from decay measure-
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FIG. 2. ri =
∣∣∣σ(1)
i

∣∣∣ /σNLOSM for the three single-top channels.

Both LO and NLO results are shown. Error bars indicate
scale uncertainties. K-factors are given in the lower panel.
Negative contributions are labeled with “(-)”.

ments [16, 37, 38]. 1

NLO

LO

Decay

-8 -6 -4 -2 0 2 4
-3

-2

-1

0

1

2

3

CtW

C
ΦQH3L

NLO

LO

-0.4 -0.2 0.0 0.2 0.4
-3

-2

-1

0

1

2

3

CqQ
H1,3L

FIG. 3. 95% limit from single-top measurements, with

LO/NLO predictions for EFT. Left: (O
(3)
φQ, OtW ); right:

(O
(3)
φQ, O

(3)
qQ). Limits from top decay measurements are com-

pared.

Distributions. The QCD corrections have more
crucial effects on the shapes of observables that can be
used to identify deviations. Some key observables have
very distinct distributions that depend on the relative
contribution from different operators. If any deviation
in total cross section is observed, these observables will
determine which operator is the source of the deviation.
Even without any deviation, including these observables
in a global analysis can help to constrain flat directions.

1 See also Ref. [39] for RG-induced bounds on top-quark operators.

In our approach, distributions can be obtained at NLO
in QCD with PS simulation [24, 40], and with top quarks
decayed keeping spin correlations [41]. In Figure 4 we
show the normalized distributions of the top-quark ra-
pidity, yt, in t-channel single-top production, which is an
efficient discriminating observable, and has been mea-
sured already [42, 43]. We can see that its distribution is

more forward for OtW while rather central for O
(3)
φQ. The

difference arises already at the parton level due to the
Lorentz structure of OtW suppressing the forward scat-
tering amplitude [5], and it is diluted at NLO due to real
corrections.
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FIG. 4. Normalized rapidity distributions of the top quark

in t-channel single-top production, from OtW and O
(3)
φQ. Only

the interference with the SM is included. Lower panel shows
theK-factors of individual operators, with scale uncertainties.

Figure 4 also explains why NLO corrections are im-
portant when shape information is used. It makes both
distributions more central, and missing this correction
would lead to an underestimate of the size of the OtW
contribution on one hand and a corresponding overesti-

mate of O
(3)
φQ on the other. We find that other variables,

including pT and rapidity of the first non-b jet and of the
first b-jet, are affected in a similar way. Moreover, the
theory uncertainty in shapes due to missing QCD is not
captured by varying µR and µF . We thus conclude that
NLO QCD corrections can lead to bias in an EFT analy-
sis, by shifting the theoretical predictions for the shapes
of discriminating observables.

To quantify this effect, we consider two benchmark

points, 1: C
(3)
φQ = 0.8, CtW = 2, and 2: C

(3)
φQ = −1.1,

CtW = −1.4, each corresponding to about a 15% devia-
tion in the total cross section. We compute at NLO the
distributions of two observables, yt and pT of the first
non-b jet, and use the results as pseudo data, which we
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tion.

consider in 5 bins for pT,j from 20 to 180 GeV and 6 bins
for |yt| from 0 to 3. We then perform χ2 fits with LO
and NLO predictions respectively and compare. Results
depend on the combined uncertainty of experiment and
theory. Current data at LHC 8 TeV correspond to ∼ 10%
uncertainty in each bin [43]. Foreseeing future improve-
ments in the analyses, we assume ∼ 5% uncertainty in
each bin and we find that the operator coefficients ex-
tracted from the fit are shifted by NLO effects. This is
shown in Figure 5.

The dotted contours in Figure 5 represent a constant
deviation in the cross section. Cross section measure-
ments constrain the direction orthogonal to these con-
tours. On the other hand, including shape information
constrains the direction along these lines. The bias in-
duced by QCD corrections is reflected by the dashed and
the solid arrows, which represent the resulting deviations
from the fit, at LO and NLO respectively. For exam-
ple, in the second scenario the central values of coeffi-
cients extracted at LO are (−1.5,−0.18), and become
(−1.1,−1.4) at NLO, and the one-sigma regions have al-
most no overlap. This shift is not in the radial direction
corresponding to an overall rescale by the NLO K-factor.
Rather, it leads to a different direction of deviation in the

C
(3)
φQ − CtW plane, as clearly indicated by the angle be-

tween the dashed and the solid arrows.

At this point it is important to note that the two op-

erators, O
(3)
φQ and OtW , correspond to different types of

new physics [44]. The first operator is likely to be gen-
erated by mixing SM particles with heavy objects such
as W ′ [45, 46] and heavy quarks [47, 48]; the second one

is loop induced, and typical scenarios include two-Higgs-
doublet models [49] and supersymmetric models [50–52].
It follows that missing QCD correction will lead us to
incorrect conclusion about the type of UV physics.

To sum up, there are two kinds of QCD NLO effects for
single-top processes. The first is on total cross sections.
It can be captured by applying a K-factor to LO results,
and only affects the magnitude of deviation from the SM.
The second is on the shapes of discriminator observables.
It cannot be captured by a simple K-factor, and it affects
the direction in which new physics deviates from the SM.
Hence it is important because if deviations are observed
in the single-top channel, missing such corrections would
lead us to misinterpret measurements of possible devia-
tions and misconclude the nature of UV physics.

EFT scale uncertainties. Perturbative calcula-
tions performed in SMEFT suffer from a new source of
scale uncertainty: the running and mixing of operator
coefficients. In our calculation operators are defined at a
scale µ′, separately from µR,F . This allows us to study
this uncertainty alone, independent of the usual renoma-
lization and factorization scale uncertainties.

This uncertainty can be estimated with σ
(1)
i (µ′, µ′0) ≡

Γ(µ′, µ′0)jiσ
(1)
j (µ′), i.e. the operator contributions at µ′

evolved back to central scale µ′0. Here Γij is the solution
to the RG equations:

Γij(µ
′, µ′0) = exp

(
−2

β0
log

αs(µ
′)

αs(µ′0)
γij

)
, (10)

with β0 = 11 − 2/3nf , and nf = 5 is the number of
running flavors.

For illustration, we present the scale variation in the
tW associated channel. This process involves both OtW
and OtG already at the tree level, so both the running
and the mixing effects are observable. In Figure 6 we
show the µ′ dependence of the dimension-six contribu-
tion from OtW and OtG, where we choose µ′0 = mt as
the central scale, and vary µ′ from mt/10 to 2 TeV, fix-
ing µR and µF . It is clear from the plot that this kind
of scale dependence can be reduced at NLO, indicating
that the leading QCD log terms from the running and
mixing of operator coefficients are cancelled by NLO cor-
rections. We should point out that there are cases where
mixing effects are much more important than the pre-
sented example in Figure 6 [15, 39, 53–60], but the latter
is a proof of principle that the related EFT scale uncer-
tainties can be taken under control by including the full
NLO corrections.

Finally, it is worth pointing out that the RG equations
for operators cannot capture the dominant NLO correc-
tions. From the plot we can see that the RG correction to
OtW from high scale Λ down is negative, while the com-
plete NLO correction gives a sizeable increase. A reliable
result can only be obtained by carrying out the complete
NLO computation. A similar observation in the context
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of Higgs physics has been pointed out by the authors of
Ref. [61, 62].

Summary. We have presented predictions for single-
top processes at NLO with PS in SMEFT. Bounds on
higher-dimensional operators are improved thanks to bet-
ter accuracy and precision. More importantly, QCD cor-
rections lead to non-trivial modifications to the shapes
of the most powerful discriminating observables. If new
physics shows up in single-top processes, missing such
corrections would change the interpretation of the mea-
surements and lead us to bias our interpretations in terms
of new physics models. We have also demonstrated that
the scale uncertainties associated to the running and mix-
ing of operator coefficients should be considered, and can
be reduced by including NLO corrections.

Our results should be used in experimental simula-
tions, as they are important for interpreting measure-
ments, and are available as an NLO+PS event genera-
tor. With more accurate and precise EFT simulation
and uncertainties under control, SM deviations can now
be analyzed in a top-down way, designing new analyses
to maximize sensitivity and allowing for a more efficient
approach to the study of the top-quark interactions.
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