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Thermodynamics places a limit on the efficiency of heat engines, but not on their output power
or on how the power and efficiency change with the engine’s cycle time. In this letter, we develop a
geometrical description of the power and efficiency as a function of the cycle time, applicable to an
important class of heat engine models. This geometrical description is used to design engine protocols
that attain both the maximal power and maximal efficiency at the fast driving limit. Furthermore,
using this method we also prove that no protocol can exactly attain the Carnot efficiency at non-zero
power.

Introduction Heat engines - machines that exploit
temperature differences to extract useful work, are mod-
eled as operating in either a non-equilibrium steady-
state, e.g. thermoelectric engine [1, 2], or as a cyclic
engine, where external parameters and temperature are
varied periodically in time, e.g. the Carnot, Otto, Stir-
ling and the Diesel cycles [3]. Both types of engines are
characterized by two main figures of merit: efficiency and
power.

In recent years, many important properties of steady
state heat engines were discovered. For example, it was
shown that their power and efficiency cannot be max-
imized simultaneously, a property which we refer to as
power-efficiency trade-off [4–10]. Less is known about
the efficiency and power of cyclic heat engines, but a
lot of research effort has been devoted to understand-
ing them in the last decade [11–18]. The operation of
a cyclic engine is characterized by a protocol that de-
scribes the time dependence of key variables along the
cycle — e.g. piston position and temperature. The set
of feasible protocols however, is strongly bounded by a
set of engine specific and hence non-generic constraints.
Maximizing power or efficiency is, therefore, a nontrivial
constrained optimization problem. Nevertheless, there
is a natural optimization problem which is both simpler
and of practical importance: the efficiency and power of
a heat engine with a fixed protocol as a function of the
cycle time.

Do cyclic heat engines have a power-efficiency trade-
off as a function of their cycle time, analogous to the
trade-off in steady state heat engines? Analytical [15],
numerical [19, 20] and experimental [21] results for cer-
tain driving protocols seem to suggest that this might
be the case: increasing the cycle time increases the ef-
ficiency, with the maximal efficiency (which is possibly
lower then the Carnot limit as in the Diesel, Miller and
Sargent cycles) only attained in the quasi-static limit —
namely at infinitely long cycle time, where the power van-
ishes. Driving the engine faster increases the power at the
expense of efficiency, until eventually, at fast enough driv-
ing, the dissipation rate becomes significant and causes
a decrease in power. Yet, as we demonstrate, this com-

monly adopted viewpoint [27] is not universally valid,
and there is no inherent trade-off between power and ef-
ficiency as a function of the cycle time, although such a
trade-off always exists in cycles that exactly attain the
Carnot bound.

Here we analyze a class of cyclic heat engine mod-
els, referred to as geometric heat engines, which includes
the paradigmatic examples of a Brownian particle in a
parabolic potential [11, 12, 15, 21] and the two-state
Markovian engines [23], but is not limited to these mod-
els. In this class, the work and heat can be interpreted as
areas in state space (the space of all the possible states of
the engine) defined through the periodic trajectory of the
engine’s state. Using geometrical insights, we construct a
protocol whose power and efficiency are both maximized
at the infinitely fast driving limit. This proves that cyclic
heat engines do not have an inherent trade-off between
power and efficiency as a function of their cycle time.
Achieving the maximum efficiency at finite power, how-
ever, comes with a price: we prove that in this class of
models the Carnot limit cannot be attained at positive
power. Therefore, to avoid the trade-off, the efficiency
must be lower then the Carnot limit. Similar relations
between the Carnot limit and power were discussed in
[11, 12] in the linear response regime, and very recently
for systems with local detailed balance in [24].

Model description: We focus here on a specific model,
and subsequently show that our results are valid for a
larger class of models. This model consists of an over-
damped Brownian particle confined to one spatial dimen-
sion, in a time dependent harmonic potential V (x, t) =
Λ(t)

2 x2, coupled to a heat bath with a time dependent in-
verse temperature β(t). This model was suggested in [15]
and experimentally realized in [21]. Both Λ(t) and β(t)
are periodic with a cycle time τ [28]. The engine’s pro-
tocol, which is a time-parametrized closed curve in the
control space - the space of external control parameters,
is denoted by Γβ,Λt = (β(t),Λ(t)) where the subscript t
indicates that the protocol is parametrized by the time
and the superscripts β,Λ indicate that this protocol is
defined in the [β,Λ] control space.
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To describe the engine’s properties when the same pro-
tocol is performed at different cycle times, it is useful to
consider the protocol in terms of a dimensionless time
parameter, s = t/τ ∈ [0, 1). Defining the protocol as
Γβ,Λs = (β(s),Λ(s)), allows us to treat the cycle time τ
as a parameter, independent of other characteristics of
the protocol.

As described in [15], when this engine model reaches
its periodic state, the probability distribution of the par-
ticle’s position is a centered Gaussian whose width (vari-
ance) w = 〈x2〉 evolves according to [29]:

dw

ds
= τ

(
β−1(s)− Λ(s)w(s)

)
. (1)

The infinitesimal system-bath heat exchange is given
by dQ = Λ

2
dw
ds ds, where dQ > 0 implies that heat flows

into the system [15, 25]. By energy conservation, the
total work extracted in a cycle and the corresponding
power are:

W =

∫ τ

0

dQ =

∫ 1

0

Λ

2
dw; P = W

τ . (2)

The work W has a geometrical interpretation: it is half
the oriented area bounded by Γw,Λs = (w(s),Λ(s)), which
is the trajectory the system follows in its state space,
[w,Λ]. An important consequence of the geometrical in-
terpretation is that the work is parametrization indepen-
dent: if some other driving protocol, Γ̂β,Λs , happens to
trace the same contour in the [w,Λ] space as Γw,Λs but at
a different s parametrization, then the extracted work is
equal in the two protocols, even though Γw,Λs 6= Γ̂w,Λs .

To define efficiency, the cost of any protocol in terms
of the extracted heat during a cycle must be quantified.
This can be done by accounting for only the sections of
the cycle during which heat flows from the bath into the
system:

Qin =

∫ 1

0

Λ

2

dw

ds
Θ

[
Λ
dw

ds

]
ds, (3)

where Θ[·] is the Heaviside step function. Qin can be
interpreted geometrically as half the area under the sec-
tions of Γw,Λs in which w decreases [30]. With these defi-
nitions, which are consistent with the laws of thermody-
namics [15], the efficiency is given by η = W

Qin
, and it can

be interpreted as the ratio between the two corresponding
areas [31].

The work and heat are interpreted as areas in state
space [w,Λ], whereas the engine’s driving protocol is de-
fined in the [β,Λ] control space. This makes it difficult to
directly relate the protocol to the areas associated with
work and heat. However, the protocol can also be de-
fined as ΓΩ,Λ

s = (Ω(s),Λ(s)), where Ω = (βΛ)
−1

. Note
that Ω is the width of the Boltzmann distribution for the
potential V = Λx2

2 . The main advantage of defining the
protocol as ΓΩ,Λ

s is that in the quasi-static limit, τ →∞,

Eq.(1) implies that w(s) → Ω(s) and Γw,Λs → ΓΩ,Λ
s ,

therefore we can unify the control space and state space.
With decreasing τ , the contour that defines the protocol,
ΓΩ,Λ
s , continuously deforms into the contour Γw,Λs , which

has the geometrical interpretation for work and heat.
Finite cycle time: Consider next a simple driving pro-

tocol, in which Γβ,Λt traces a circle at a uniform rate in the
control space [β,Λ], as shown in the upper inset of Fig(1).
The upper panel shows the efficiency and power as a func-
tion of the cycle time τ . This protocol has the typical
behavior described above: the efficiency is a monotoni-
cally increasing function of τ , attaining its maximum as
τ →∞, where the power is zero. The power is maximal
at τ ≈ 25. Below about τ = 11, the work – and hence
the power and efficiency – becomes negative. For this
to happens, the area bounded by Γw,Λs must changes its
orientation. How can this comes about?

There are only two generic ways in which the area ori-
entation of a closed curve in 2D can change through con-
tinuous deformations: a cusp singularity or a self-tangent
singularity [26]. We next analyze the formation of cusps,
whereas the self-tangent case is analyzed in the SI. A
cusp in Γw,Λs emerges when both w(s) and Λ(s) have an
extreme point at the same value of s [26]: if varying
τ causes the value of s∗ at which dw

ds (s∗) = 0 to pass

through s∗∗ for which dΛ
ds (s∗∗) = 0, then a cusp is formed

when s∗ = s∗∗, and developed into a loop with an in-
verted orientation. This loop decreases the power and
efficiency, enabling the work to vanish at some non-zero
τ . In the example described in Fig.(1), a cusp is gen-
erated at τ ≈ 17. Below this τ , the cusp evolves into
a negatively oriented loop, reducing the power and effi-
ciency.

Realizing that the negative power can be related to
negatively oriented areas immediately raises the ques-
tion: can we design a protocol in which they never oc-
cur? To avoid singularities, the locations s∗i (τ) of the
extreme points of w(s), where the index i label the differ-
ent extreme points, must be considered. However, even
if we know s∗i (τ), manipulating the protocol to avoid the
singularities is challenging: varying either Λ(s) or Ω(s)
varies s∗i (τ) too. To simplify the analysis, we take advan-
tage of the parametrization invariant property of areas.
Instead of the actual parameterization, we consider the
reparametrized quantities

w̄(s) = w
(
λ(s)

)
, Λ̄(s) = Λ

(
λ(s)

)
, Ω̄(s) = Ω

(
λ(s)

)
(4)

where

λ(s) =

∫ s
0

Λ̄(x)−1dx∫ 1

0
Λ̄(x)−1dx

. (5)

Note that λ(s) is monotonically increasing with s, and
moreover λ(0) = 0 and λ(1) = 1. Also note that λ(s)
is given in terms of Λ̄(s) rather then Λ(s). Although
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FIG. 1: Upper panel: Power and efficiency as a function of
the cycle time τ for a circular protocol in the [β,Λ] control
space (inset). This protocol attains its maximal efficiency
(ηmax ≈ 0.26) at the τ → ∞ limit. The Carnot limit for
this protocol is ηC = 0.4. At high driving rates, the power
changed its sign. Lower panel: The [w,Λ] curves of the
above protocol for few values of the cycle time τ . At about
τ = 17 the curve develops a cusp, which for even smaller τ
evolves into a loop with a negative orientation. The inset
shows a blow-up of the cusp and a negatively oriented loop.

w̄(s) 6= w(s) and Λ̄(s) 6= Λ(s), their corresponding
curves, Γw,Λs and Γw̄,Λ̄s , trace the same contour in the
engine’s state space, [w,Λ], hence they have the same
work and efficiency. In this reparameterization,

dw̄

ds
= τ̄

(
Ω̄(s)− w̄(s)

)
(6)

where τ̄ = τ∫ 1
0

Λ̄(x)−1dx
.

The main advantage in the reparametrization is that
Eq. (6) is independent of the potential width Λ̄. There-
fore, Λ̄(s) can be manipulated without affecting w̄(s), but
at the price of rescaling τ .

To avoid cusp generation, we next explain how the
extreme points of w̄(s) change with τ̄ . Let us denote by

s∗i the values of s at which w̄(s) has an extreme point,
namely dw̄

ds (s∗i ) = 0. By taking the derivative of Eq.(6)

and using dw̄
ds (s∗i ) = 0 it follows that

w̄(s∗i ) = Ω̄(s∗i );
d2w̄

ds2
(s∗i ) = τ̄

dΩ̄

ds
(s∗i ). (7)

These equations can be interpreted as follows: In the
limit τ̂ → ∞, w̄(s) = Ω̄(s) everywhere. Decreasing

τ̄ , the maximal points of w̄(s), for which d2w̄
ds2 (s∗i ) < 0,

“slide” along the Ω̄(s) curve down and to the right (where
the slope of Ω̄(s) is negative), and similarly, the minimal

points of w̄(s) (where d2w̄
ds2 (s∗i ) > 0) slides up and to the

right along the positive slope of Ω̄(s). Physically, this
means that decreasing τ̄ results in a flattening of w̄(s),
and an increasing phase-lag between w̄(s) and Ω̄(s), (see
lower panel of Fig. 2). As we show in the SI, it is the
phase-lag that deteriorates the power, not the flattening.

Designing a protocol without a power-efficiency trade-
off. To avoid the power deterioration, which is the typ-
ical behavior for simple protocols in the [β,Λ] control
space, we should design a protocol that does not form
singularities. This can be done by choosing Ω̄(s) =
c1Λ̄(s) + c2 for some constants c1 and c2, and Λ̄(s) that
has a single oscillation. In such a protocol, the extreme
points of w̄(s) coincide with those of Λ̄(s) only at τ̄ →∞,
and no self tangent can be formed (SI). In the τ̄ → ∞
limit, Γw̄,Λ̄s bounds no area — the work and efficiency
are zero. Decreasing τ̄ , the phase-lag between Λ̄(s) and
w̄(s) ‘inflates’ the area. In Fig.(2) we demonstrate this
through the example Λ̄(s) = Ω̄(s) = 1.5 + sin(2πs). As
discussed, decreasing τ̄ shifts w̄(s) to the right and its
amplitude decreases. In this protocol both the maximal
power and maximal efficiency are attained asymptotically
at the fast driving limit.

To implement this protocol in an experimental realiza-
tion as in [21], we need to transform the protocol form
[w̄, Λ̄] into [β,Λ]. As λ(s) is given in terms of Λ̄(s) (Eq.
5), this can be done by a straight-forward calculation.
The resulting protocol in the [β,Λ] space is shown in the
inset of Fig.(2). The maximal efficiency in this protocol
is only ηmax = 0.687, compared to the Carnot efficiency
calculated from the minimal and maximal temperatures
which is ηCarnot = 0.96. This is expected, since in this
protocol the engine exchanges heat with many heat baths
at intermediate temperatures, hence it cannot attain the
Carnot efficiency computed with the extreme tempera-
tures. However, this protocol does not suffer from a trade-
off between power and efficiency.

With these tools, it is natural to ask: is it possible
to design a protocol that achieves the Carnot limit but
has non-zero power? As we show in the SI, the answer
is no. This is proven by showing that for any piecewise
continuous protocol Γβ,Λs attaining the Carnot limit at
some finite cycle time τ , it is possible to slightly deform
the protocol into a different protocol Γ̃β,Λs with the same
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FIG. 2: Upper panel: Power and efficiency as a function
of the cycle time τ . The protocol is given by Ω̄(s) = Λ̄(s) =
1.5 + sin(2πs). The inset shows the protocol in the [β,Λ]
control space. The protocol traverses the line back and forth,
without covering any area. Lower panel: w̄(s) for various
values of τ . When τ =∞, w̄(s) = Ω̄(s). As can be seen, the
maximum of w̄(s) “slides” down the negative slope when τ
decreases, and the minimum if ω̄(s) “slides up” on the positive
slope. Overall, w̄(s) shifts to the right and its amplitude
decreases with decreasing τ .

β(s) (hence the same Carnot bound), such that the effi-
ciency of Γ̃β,Λs is strictly larger then that of Γβ,Λs , hence
larger then the Carnot limit. This would violate the sec-
ond law.

Applicability to other models. The above analysis was
made possible due to three properties: (i) The interpre-
tation of the work and heat as areas; (ii) The 2D nature
of state space, which enabled a simple characterization
of all the possible ways in which the area can change
its orientation, and (iii) The ability to separately control
Λ̄(s) without influencing the other state parameter, w̄(s).
What class of models share these properties? A com-
plete answer to this question is yet unknown, however, as

shown in the SI, in addition to the example given above,
this class contains also any 2-levels Markovian model,
which are commonly used to study heat engines [23].
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