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The dynamics of a quantum phase transition are explored using slow quenches from the polar to
the broken-axisymmetry phases in a small spin-1 ferromagnetic Bose-Einstein condensate. Measure-
ments of the evolution of the spin populations reveal a power-law scaling of the temporal onset of
excitations versus quench speed as predicted from quantum extensions of the Kibble-Zurek mecha-
nism. The satisfactory agreement of the measured scaling exponent with the analytical theory and
numerical simulations provides experimental confirmation of the quantum Kibble-Zurek model.

Symmetry-breaking continuous phase transitions play
important roles in many areas of physics including cos-
mology, particle physics and condensed matter. When a
system is quenched across the critical point of a contin-
uous phase transition, the time scale characterizing the
dynamics diverges, and subsequent non-adiabatic evolu-
tion generally gives rise to topological defect excitations.
The Kibble-Zurek mechanism (KZM) provides a general
theory for understanding the non-equilibrium dynamics
of these systems and predicts a universal power-law scal-
ing of the excitations as a function of the quench rate with
an exponent that is simply related to the equilibrium crit-
ical exponents [1–5]. The KZM was first introduced by
Kibble in his study on topology of cosmic domains and
strings in the early universe [1, 2]; it was later extended
by Zurek [3–5] who suggested applying these symmetry
breaking ideas to laboratory accessible condensed mat-
ter systems, including superconductors and superfluids.
This seminal work inspired a host of theoretical [6–13]
and experimental [14–34] investigations of KZ scaling in
thermodynamic (finite temperature) transitions; for a re-
cent review, see [35].

There is much current interest in extending the KZM
to continuous quantum phase transitions (QPT), which
are zero temperature transitions driven by Heisenberg
quantum fluctuations rather than thermal fluctuations
[36, 37]. In these transitions, a qualitative change in the
ground state occurs when a parameter in the Hamilto-
nian is varied across the quantum critical point (QCP)
at zero temperature. There have been many theoreti-
cal proposals for observing the KZM in a quantum phase
transition [37–49]; however thus far only two experiments
have investigated the scaling of excitations with quench
speed [50, 51] in a QPT, both using the Mott insulator
to Bose-Hubbard superfluid (MI-SF) transition in opti-
cal lattices. In [50], the excitations of a condensate were
measured versus quench speeds in a 3D lattice quenched
into the SF phase, and in [51], the temporal growth of the
coherence length was measured versus quench speed into
the SF phase for different lattice dimensionalities. Power
law scaling was observed in both experiments, but the
measured exponents did not agree with KZM analyses of
the critical exponents [35, 52]. Furthermore, the mea-
sured dynamics in [51] show complex behavior beyond

power-law scaling that indicate that the KZM model does
not adequately capture the underlying physics or at best
could only be observed in unrealistically slow quenches
[52]. A particular challenge for these experiments is that
with the exception of the 1D lattice investigated in [51],
quantum simulations of the realistic experimental con-
ditions are beyond current capabilities. Hence, there is
strong motivation for additional experimental investiga-
tions, ideally in simpler quantum systems that permit
direct comparison to theory.

Several theoretical investigations have suggested that
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FIG. 1. Concept. (a) The energy gap ∆ between the ground
state and first excited state is plotted as a function of the
quadratic Zeeman energy q (in units of |c|). The gap vanishes
at the critical point qc = 2|c|, shown by the vertical dashed
line. The spheres show the spin-nematic phase space for dif-
ferent values of q: (left) broken-axisymmetry phase (q < 2|c|)
and (right) polar phase (q > 2|c|). The ground state in each
phase is indicated with red dots. (b) The ‘freeze-out’ region
for a given ramp speed (blue shaded) is determined by the
intersection of the minimum response time (red) and the ef-
fective speed of the ramp (green). See text for details.
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the polar (P) to broken-axisymmetry (BA) quantum
phase transition in spin-1 condensates would be a promis-
ing platform for verifying the quantum KZM [44, 45, 53–
56]. Although excitations following fast quenches have
been studied in a number of spinor BEC experiments [57–
62] (including a recent paper that observed the scaling
of excitations versus quench depth in a two-component
BEC [63]), the scaling of the spin excitations versus
quench speed predicted by the KZM has not been mea-
sured.

In this Letter, we investigate the KZM using small
spin-1 87Rb condensates by measuring the evolution of
the spin populations during slow quenches from the po-
lar phase. The temporal onset of spin excitations show a
power-law dependence versus the quench speed with an
exponent that is within 15% of the prediction of the an-
alytical KZM model and in good agreement with quan-
tum simulations of the quench dynamics incorporating
the measured experimental conditions. A distinguishing
feature of our KZM investigation is that, unlike in spa-
tially extended systems where the KZM is manifest in
topological defects, the excitations in our experiment are
constrained to the temporal evolution of the spin popu-
lations because spin domain formation is suppressed for
small condensates. This simplifies the complexity of the
system and permits accurate quantum simulations to be
performed using realistic experimental parameters.

The spin dynamics of a small spin-1 BEC in a magnetic
field along the z-axis can be described by the Hamilto-
nian: Ĥ = c̃Ŝ2 − q

2 Q̂z. The first term describes the spin
interactions, where c̃ is the spin-dependent elastic colli-
sion coefficient related to the s-wave scattering lengths
for collisions between pairs of atoms (c̃ < 0 for ferromag-
netic condensates), and Ŝ2 = Ŝ2

x + Ŝ2
y + Ŝ2

z is the to-
tal spin vector operator. The second term describes the
quadratic Zeeman energy per particle. Q̂z is proportional
to the spin-1 quadrupole moment, Q̂zz [61], and q = qzB

2

is the quadratic Zeeman energy per particle, where B is
the magnitude of the magnetic field and qz ≈ 71.6 Hz/G2

(hereafter h = 1). In terms of the mean-field expectation
values, the spin energy is:

H =
c

2
S2 − q

2
Qz (1)

where c ∝ c̃ is the spinor dynamical rate and Qz =
2ρ0 − 1, with ρ0 being the fractional population in the
|F = 1,mF = 0〉 state. The states of the system can
be represented on the {S⊥, Q⊥, Qz} unit sphere, where
S2
⊥ = S2

x + S2
y and Q2

⊥ = Q2
xz + Q2

yz [61], as shown in
Fig. 1.

The quantum critical point between the P and BA
phases occurs at qc = 2|c|. Using Bogoliubov theory,
it can be shown that the BA phase (q < qc) ground state
has three excitation modes [64]. Two are gapless modes
(in the long wavelength limit), which arise from the SO(2)
symmetry breaking as predicted by the Goldstone theo-

rem [65]; the third mode has a non-zero eigenvalue, cor-
responding to the energy gap between the ground and
first excited state (see Fig. 1a).

∆ =
√
q2c − q2 ∼

∣∣qc − q∣∣1/2 (2)

where the approximation is valid near q = qc.
A universal feature of QPTs is that close to the critical

point, the properties of the system are uniquely described
by critical exponents determining the functional form of
the energy gap as a function of the parameters of the
Hamiltonian: ∆ ∼ |gc − g|zν , where z, ν are the critical
exponents, g is the tuning parameter, and gc is the crit-
ical point of the system [36]. Comparing to Eq. 2 shows
that zν = 1/2 for the spin-1 system.

Because the energy gap ∆ vanishes at the critical point
(ignoring finite-size effects), the system cannot cross the
critical point adiabatically. The utility of the KZM is
that it provides a universal prescription for quantify-
ing the dynamical excitation based on the exponents
z, ν that govern the equilibrium behavior of the system
[3, 38, 45, 66]. As illustrated in Fig. 1b, two character-
istic timescales can be compared to explain the behav-
ior of the system initialized in the ground state of one
phase as it is driven across the QCP. The first is the
reaction time of the system to changes in the Hamilto-
nian, which is inversely proportional to the energy gap
∆. The second is ∆/∆̇, which describes how fast the
system is driven through the critical point. In our exper-
iment, the system is driven from the polar to BA phase.
Close to the critical point, the reaction time is too large
for the evolution to be adiabatic, and the evolution shifts
to an impulse regime where the system remains frozen in
the polar ground state in the mean-field approximation.
When the two timescales become comparable again, the
system unfreezes and is now in an excited state. The
dynamics resume and the system is able to adiabatically
evolve towards the BA ground state.

The freeze out time t̂ between the crossing of the
critical point and the recovery of adiabatic evolution is
a function of the ramp speed and can be found from
∆−1(t̂) = ∆/∆̇|t=t̂. For the case of linear ramps of the
control parameter of the Hamiltonian (q, in our case) in
a quench time τQ, then q̇ ∝ τ−1Q and the power-law re-

lation t̂ ∝ τ
νz/(1+νz)
Q = ταQ, where α = 1/3, is obtained

(see Supplemental Information). Introducing the dimen-
sionless ratio q̃ = q/|c| and defining q̂ as the change in q̃
between the crossing of the critical point and the resum-
ing of dynamics, a power law scaling can also be derived
for q̂ using the same approach as for t̂, which results in

q̂ ∼ τ̃
−1

1+νz

Q = τ̃βQ, where β = −2/3 and τ̃Q is the inverse
of the rate of change of q̃ at the critical point.

The experiments use small spin-1 87Rb atomic Bose
condensates in the F = 1 hyperfine state confined in
an optical dipole trap. The condensates are initialized
in the mF = 0 state in a high magnetic field, which is
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FIG. 2. Quench dynamics. (a) Measurements of ρ0 for different ramp times as a function of q̃ = q/|c|. The ramp times
shown correspond to the duration to ramp the magnetic field from q̃ = 2.2 to q̃ = 0. The longer ramps show evolution after
a smaller change in q̃ than the shorter ramps. For the latter, the system stay frozen in the polar phase ground state (ρ0 = 1)
until a larger change in q̃, as expected from the KZM. The horizontal and vertical dashed line indicate the ρ0 threshold and the
critical point respectively. (b) Measurements of ρ0 (red squares) and its standard deviation ∆ρ0 (blue circles) during a typical
experimental run where the magnetic field is slowly ramped down through the critical point such that the q decreases linearly.
The thresholds used to determine when the system ‘unfreezes’ are shown as a horizontal dashed lines. The system shows good
agreement with simulations (gray curves and envelopes showing ± one standard deviation) for long evolution times beyond the
freeze-out period. The top axis shows q̃, with the vertical dashed line at q̃ = 2 marking the critical point. The dotted line
indicates when the system crosses the determined threshold.

the polar ground state (see Fig. 1a, right). The conden-
sates are quenched across the QCP at different speeds,
and the onset time (and corresponding value of q) for
excitations from the polar ground state are determined
from the time evolution of the mean value spin popula-
tion ρ0 and the fluctuation ∆ρ0. In Fig. 2a, the results
from several ramps are shown. For each these ramps,
the field is first lowered quickly to q0 = 2.2|c|, and then
ramped according to q(t) = q0 − t/τQ for a range of
τQ values. For asymptotically slow ramps, the popula-
tion ρ0 should adiabatically follow the ground state value
ρ0,GS = 1/2 + q/4|c| for q < qc = 2|c|. From the data
in Fig. 2a, it is clear that the population lags the ground
state value by an amount that increases for faster ramps,
indicating the non-adiabatic crossing of the QCP.

The determinations of t̂ and q̂ are shown in Fig. 2b,
which show both ρ(t) and ∆ρ0(t) for a typical quench.
To determine when the system ‘unfreezes,’ thresholds of
ρ0 = 0.99 and ∆ρ0 = 0.005 are used. As pointed out in
[45], the exponent is insensitive to the choice of the exact
thresholds. The freeze-out time is t̂ = tth − tc, where
tc is the time the system crosses the critical point and
tth is where ρ0 and ∆ρ0 reach their respective thresh-
olds. q̂ is determined similarly to t̂, and is given by
q̂ = q̃(tth)− q̃(tc). The use of q̃ allows us to incorporate
the effect of the finite lifetime of the condensate (∼ 2 s)

in the data analysis. The value q/|c| is affected by the
reduction of density due to the finite lifetime of the con-
densate, as the spin interaction energy depends on the
density and atom number as c(t) ∝ n(t) ∝ N(t)2/5 (see
Supplemental Information), which we account for by us-
ing q̃ = q(t)/|c(t)|.

In order to be able to extract accurate values for t̂ and
q̂, it is necessary to make a careful determination of qc =
2|c|. This is achieved by preparing the system in the polar
ground state and measuring the onset of fluctuations in
ρ0 following a fast quench from high field to a final field
value in the neighborhood of the critical field, Bc. For
final field values above Bc the subsequent fluctuations
are negligible, but there is a sharp onset of fluctuations
below Bc. Using this approach, Bc is determined with an
uncertainty as low as 2 mG (Supplemental Information).

To determine the scaling of the excitations as a func-
tion of ramp speed, the values of q̂ are plotted versus τ̃Q
as in Fig. 3. The data are fit to a power law, which reveals
good agreement, except for the slowest ramps (τ̃Q > 1.5),
which start to deviate from the fit. This is likely due to
the large amount of atom loss in this regime. The in-
set in Fig. 3 shows the same data in a log-log plot along
with a linear fit of the data between 0.04 < τ̃Q < 1.5.
This fit yields the power law exponent β = −0.80(8),
where the quantity in parentheses is one standard devia-
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FIG. 3. Power law fit. q̂ data (red squares) and simulations
(dashed line with ± one standard deviation envelope) plotted
with respect to the characteristic ramp time τ̃Q. The red and
black solid lines correspond to fits to the data and simulations
respectively. The inset shows a linear fit to the log of the data
for τ̃Q < 1.5 (solid markers), yielding a scaling exponent of
−0.80(8).

tion. The data are compared with simulations matching
the experiment conditions (gray shaded region) and the
agreement is satisfactory. In particular the power law ex-
ponent determined from the simulations is β = −0.79(7).
The experiment was repeated multiple times over several
months, and the results are summarized in Fig. 4. The
scaling exponents were determined from analyzing both
ρ0 and ∆ρ0; the latter are shown as blue markers (see
Supplemental information for results from all data sets).
The fourth data set used a different trap geometry—an
elongated cigar-shaped trap, which benefits from a longer
lifetime of ∼ 15 s. Even though the condensate was no
longer in the single mode approximation, no spin domains
were detected before the system crossed the thresholds
used to determine the freeze-out time, and the measured
β = −0.80(10) is also in good agreement with simulations
using the experimental settings.

The observed scaling exponents are self-consistent
(within experimental uncertainty) and agree well with
the simulations. They are however, slightly more nega-
tive than the −2/3 value derived above. To investigate
this discrepancy, we have performed simulations vary-
ing a wide range of parameters including atom number,
ramp speeds, initial magnetic fields and condensate life-
time (Supplemental Information).

Simulations performed in ideal conditions (infinite con-
densate lifetime, high initial magnetic field, and large
number of atoms) yield β = −0.67(2) for very long ramps
(τ̃Q > 2), in excellent agreement with the value of −2/3
predicted by the KZM (see Fig. 4). However, for the
faster ramps that we can measure due to the finite life-
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FIG. 4. Summary of scaling exponents. The red squares
and blue circles indicate the scaling exponents for data sets
analyzed using ρ0 and ∆ρ0 as thresholds, respectively. The
results from Fig. 3 correspond to the second data set. The
shaded boxes show the results from simulations performed
with the experimental conditions corresponding to the given
data set. Additional simulations are represented by black
squares, showing from top to bottom: ideal conditions, fast
ramps starting at a high magnetic field, and nominal exper-
imental conditions. The dashed vertical line indicated the
value predicted by the KZM theory.

time of the system, the simulations of the ideal case
yield a more negative result with β = −0.76(4). The
restriction of the simple theory to the slowest ramps was
pointed out in [45]. A second consequence of the lifetime
of the condensate is that it prevents starting the mag-
netic field ramps at a value much higher than the critical
point, since a large number or atoms would be lost by
the time the system crossed the critical point. A com-
promise is reached experimentally by starting with a fast
drop from a high field (q = 17.1qc) to a field closer to
the critical point (q = 1.1qc), followed by slower ramps
through the critical point. When we include this exper-
imental step in the simulations, we get β = −0.82(4),
which agrees with the experimental results. From our
simulations, the effects of atom loss are not important in
the range of ramps that are used to determine the scaling
exponent.

In summary, we have observed the Kibble-Zurek mech-
anism in spin-1 BEC quantum phase transition by mea-
suring the excitations as a function of the quench speed
across the quantum critical point. The results show
power-law scaling of the onset of the excitations that
are in agreement with theoretical predictions and thus
provide experimental confirmation of the KZM extended
to quantum phase transitions. In the future, it should
be possible to explore finite size (quantum) modifica-
tions to the KZM in the spin-1 system by varying the
system size; simulations performed for different numbers
of atoms (holding all other parameters constant) indi-
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cate that these effects should be observable in our exper-
iments.
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Oberthaler, Phys. Rev. Lett. 115, 245301 (2015).

[64] K. Murata, H. Saito, and M. Ueda, Phys. Rev. A 75,
013607 (2007).

[65] J. Goldstone, Nuovo Cimento 19, 154 (1961).
[66] B. Damski, Phys. Rev. Lett. 95, 035701 (2005).

http://dx.doi.org/10.1103/PhysRevLett.92.140403
http://dx.doi.org/10.1103/PhysRevLett.104.195303
http://dx.doi.org/ 10.1038/ncomms2179
http://dx.doi.org/ 10.1038/ncomms2179
http://dx.doi.org/10.1103/PhysRevLett.115.245301
http://dx.doi.org/10.1103/PhysRevA.75.013607
http://dx.doi.org/10.1103/PhysRevA.75.013607

	 Quantum Kibble-Zurek Mechanism in a Spin-1 Bose-Einstein Condensate
	Abstract
	Acknowledgments
	References


