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We show that the Nambu-Goldstone formalism of the broken gauge symmetry in the presence
of the T = 1 pairing condensate offers a quantitative description of the binding energy differences
of open-shell superfluid nuclei. We conclude that the pairing rotational moments of inertia are
excellent pairing indicators, which are free from ambiguities attributed to odd-mass systems. We
offer a new, unified interpretation of the binding-energy differences traditionally viewed in the shell
model picture as signatures of the valence nucleon properties. We present the first systematic
analysis of the off-diagonal pairing rotational moments of inertia, and demonstrate the mixing of
the neutron and proton pairing rotational modes in the ground states of even-even nuclei. Finally,
we discuss the importance of mass measurements of neutron-rich nuclei for constraining the pairing
energy density functional.
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Introduction — Spontaneous symmetry breaking ex-
plains the collective properties of atomic nuclei and pro-
vides straightforward physical interpretation of experi-
mental observables associated with collective modes. In
atomic nuclei, the Nambu-Goldstone (NG) mode [1–3]
connects two frames of reference: the intrinsic frame
where the symmetry is broken and the NG mode ap-
pears as a zero-energy excitation mode, and the labora-
tory frame where the symmetry is strictly conserved. The
excitation of the NG mode can be observed in the labora-
tory system as a sequence of quantum states originating
from a single symmetry-broken intrinsic state. Incorpo-
rating correlations related to the symmetry breaking is
essential for many-body theories, see, e.g., discussion in
Ref. [4]. One of the typical examples of spontaneous sym-
metry breaking in atomic nuclei is the nuclear deforma-
tion due to the rotational symmetry breaking, as a con-
sequence of the attractive particle-hole correlations [5–8].
Rotational bands can be viewed as NG mode excitations.

Nucleonic pairing is another common phenomenon in
atomic nuclei associated with spontaneous symmetry
breaking. Ground states of most nuclei can be well de-
scribed as pair condensates, in which the particle number
symmetry is broken. Superconducting nuclear states re-
sult in a NG mode called the pairing rotation, which is
seen experimentally through ground-state sequences of
even-even nuclei [9–13]. The topic of pairing rotations
continues to generate much excitement, especially in the
context of neutron-rich nuclei [14–18].

Nuclear density functional theory (DFT) is currently
the only available microscopic many-body theory that is
applicable to the whole nuclear chart. One of the rea-
sons for its success is the flexibility of the formalism to
naturally incorporate the spontaneous symmetry break-
ing mechanism. The form of the nuclear energy density

functional (EDF) is constrained by symmetry consider-
ations; popular Skyrme EDFs are built from density-
bilinear terms both in the particle-hole and pairing chan-
nels [19, 20]. Considerably less is known about the pair-
ing EDF, primarily because of the lack of the experimen-
tal observables that can inform us about the detailed
structure of the pairing EDF.

The order parameter for the superfluid phase is the
expectation value of the pair creation operator that can
be related to the observed pair transfer cross section
[9, 12, 21]. However, the coupling constants in the pair-
ing EDF are conventionally fitted so that the theoretical
pairing gaps in even-even nuclei reproduce the experi-
mental odd-even mass differences. Such a strategy has
been adopted in recent optimization work [22–24], al-
though the relationship between the pairing gap and the
experimental odd-even mass difference is indirect. More-
over there exist multiple definitions of theoretical pairing
gaps and there are various prescriptions for extracting
the odd-even mass difference from experiment [25–27].
To avoid ambiguities, it would be best to calculate the
odd-even mass difference directly from the theory. Unfor-
tunately, this involves additional uncertainties pertaining
to the definition of the ground state of an odd-A nu-
cleus [28]. Moreover, since ground-state configurations
of odd-A nuclei internally break the time-reversal sym-
metry, poorly-known time-odd terms of the EDF must
be considered. Although some of the time-odd function-
als are constrained through the local gauge invariance
of the EDF [29], the optimization of the unconstrained
time-odd coupling constants has barely started [30]. Con-
sequently, the precision of the nuclear EDF for odd-A
systems is not as good as that for even-even systems. It
is thus desirable to constrain the pairing EDF based on
experimental data involving even-even systems only.
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Objectives — In this Letter we assess the performance
of nuclear DFT for pairing rotational bands in even-even
nuclei, both semi-magic and doubly-open shell systems.
We study pairing rotational moments of inertia and as-
sess their validity as indicators of nucleonic pairing. We
check the sensitivity of pairing rotations in neutron-rich
nuclei on the density dependence of the pairing func-
tional.

Definitions — The pairing rotational picture is based
on a single intrinsic “deformed” one-body field in a gauge
space. The ground-state energy of a system with N/2
fermionic pairs can be expanded up to the second order
in the particle number with respect to a reference system
with particle number N0 [10–12, 31, 32],

E(N) = E(N0) + λn(N0)∆N +
(∆N)2

2J (N0)
, (1)

where ∆N = N − N0, λn(N0) = dE/dN |N=N0 is the
chemical potential, and the second order term is the
pairing rotational energy with the moment of inertia
J (N0)−1 = d2E/dN2|N=N0

. In the case of a two-fermion
system, Eq. (1) can be generalized by considering two
coupled pairing rotational modes. In particular, when
both neutrons and protons exhibit the pair condensate,
there exist two NG eigenmodes being linear combinations
of the neutron and proton pairing rotations [33, 34]. (A
similar situation in the dense superfluid matter in neu-
tron stars has recently been discussed in Ref. [35].) The
corresponding rotational energy can be written as [32]

Epair
rot =

∑
τ,τ ′=n,p

∆Nτ∆Nτ ′

2Jττ ′
, (2)

where Nn = N , Np = Z, ∆Nn = N−N0, ∆Np = Z−Z0,
and the tensor

Jττ ′ =
∂Nτ
∂λτ ′

∣∣∣∣
∆N ′

τ=0

=

[
∂2E

∂Nτ∂Nτ ′

]−1
∣∣∣∣∣
∆Nτ=∆N ′

τ=0

(3)

is the pairing rotational moment of inertia. The ten-
sor Jττ ′ is very sensitive to pairing correlations. Since
it is related to the second derivative of the total en-
ergy with respect to particle number, the corresponding
Thouless-Valatin (TV) inertia for the NG mode can be
readily derived by means of the self-consistent quasipar-
ticle random-phase approximation (QRPA) [36, 37].

In the region of particle numbers where static pairing
dominates, Jττ ′ can be extracted from experimental two-
nucleon separation energies S2n and S2p. For instance,
by taking λn(N,Z) = − 1

4 [S2n(N +2, Z)+S2n(N,Z)] the
moments of inertia can be written as:

J−1
nn (N,Z) =

1

4
[S2n(N,Z)− S2n(N + 2, Z)] , (4)

J−1
np (N,Z) =

1

4
[S2n(N + 2, Z)− S2n(N + 2, Z + 2)] .

(5)

(The analogous expressions for λp and Jpp are given in
terms of S2p.)

Method — To compute the TV moments of inertia
for pairing rotations we employ the linear response for-
malism of nuclear DFT in the finite amplitude method
(FAM) [38] variant. The FAM allows one to handle all
the two-quasiparticle states on the QRPA level with a
smaller computational cost than that of the traditional
matrix formulation of the QRPA. The TV moment of in-
ertia is given by a response function of the particle num-
ber operator at zero frequency. In this study, we follow
the FAM formulation of Ref. [34] for NG modes.

The computations were performed with the FAM code
[39, 40] using the DFT solver hfbtho [41] in a single-
particle basis consisting of 20 harmonic oscillator shells.
We employed the recently developed EDF UNEDF1-
HFB [42] that was optimized at the full Hartree-Fock-
Bogoliubov (HFB) level. For the pairing energy density
we use the density-dependent ansatz [43]

χ̃τ (r) =
1

2
V τ0

[
1− η ρ0(r)

ρc

]
|ρ̃τ (r)|2, (6)

where ρ̃τ is the pairing density, ρ0 is the isoscalar density,
ρc = 0.16 fm−3, V τ0 is the strength, and η is the param-
eter that controls the density dependence of the pairing
interaction.

In UNEDF1-HFB, mixed-type pairing (η = 0.5) is em-
ployed. To analyze the sensitivity of results on the den-
sity dependence of pairing functional, we also studied
volume-type (η = 0) and surface-type (η = 1) pairing
with the strengths adjusted to reproduce the average neu-
tron pairing gap in 120Sn and average proton pairing gap
in 92Mo assuming the default pairing energy window of
60 MeV. These nuclei were chosen because the average
pairing gaps computed with UNEDF1-HFB are close to
the experimental values. The resulting pairing strengths
are V n

0 = −146.07 MeV fm3 and V p
0 = −161.72 MeV fm3

for the volume pairing, and V n
0 = −474.32 MeV fm3 and

V p
0 = −551.37 MeV fm3 for the surface pairing.

Results — We start with the classic case of neutron
pairing rotations in a semi-magic chain of Sn isotopes
[12]. The theoretical values of the chemical potential and
the TV inertia have been computed for the reference nu-
cleus 116Sn (N0 = 66). As seen in Fig. 1, the harmonic
approximation (1) works very well in this case; indeed,
the TV pairing inertia agrees with experiment even when
N is far from N0. This shows that a single intrinsic pair-
ing field of 116Sn explains the binding energy behavior in
terms of the dynamics of the NG mode.

In general, the higher order corrections in ∆N are not
negligible; in analogy with the angular momentum align-
ment within a rotational band, a change of the intrin-
sic structure with neutron number is expected along a
pairing rotational band. This is seen in Fig. 1 through
the deviation of the HFB values (or experiment) from
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FIG. 1. (Color online). Neutron pairing rotational energy
measured from a reference state in 116Sn. The parabolic ex-
pression (1) with λn and Jnn evaluated for the reference nu-
cleus is shown as a solid line. The HFB (squares) and ex-
perimental (circles) values have been extracted from binding

energies according to Epair
rot = E(N)−E(66)−λn(66)(N−66).

parabolic behavior. To account for the changes of the in-
trinsic pairing field, we carry out systematic FAM+HFB
calculations for chains of semi-magic nuclei. Figure 2
displays associated chemical potentials and pairing rota-
tional moments of inertia.

The pairing rotational moments of inertia for Sn and
Pb isotopes behave fairly smoothly, and the pairing ro-
tational picture holds in the medium-mass Ca isotopes.
In general, we see a remarkably good agreement between
TV moments of inertia with experiment. The exceptions
are weakly-paired systems around the magic numbers for
which a transition to the pairing vibrational picture takes
place. In such cases, e.g., for 130Sn and 42,46,50Ca, the
experimental indicator (4) involves nuclei for which our
HFB calculations predict vanishing pairing. The finite-
difference approximation of the second-order derivative
is questionable there.

For the doubly closed shell nuclei, the theoretical pair-
ing rotational inertia is zero as the NG mode is absent due
to the vanishing static pairing. Moreover, the expression
(4) for the experimental inertia Jττ is proportional to
the inverse of the so-called two-nucleon shell gap indica-
tor δ2τ [45, 46]. This latter quantity has been attributed
to the size of the magic gap. As it was already noted
in Ref. [45], the validity of δ2τ as a signature of a shell
closure is lost in regions where the structure of nuclear
ground states is rapidly changing. Based on our results
for semi-magic nuclei shown in Fig. 2, we can make an
even stronger statement: outside shell closures, the two-
nucleon shell gap indicator δ2τ has nothing or little to
do with the distribution of single-particle energies; it is
primarily governed by pairing correlations and serves as
a good indicator of the gauge symmetry breaking.

We now study the proton pairing by investigating pair-
ing rotation in the N = 50 isotones. As shown in

Fig. 2(d), the proton pairing moments of inertia are
smaller than the neutron ones in the similar mass re-
gion, and the agreement with experiment is excellent. In
the figure, we also plot the Belyaev moment of inertia
[47], which does not include the effect of residual cor-
relations at the QRPA level. As discussed in Ref. [34],
the enhancement of difference between TV and Belyaev
proton inertia can be attributed to the Coulomb-induced
QRPA correlations. Here we recall that the proton pair-
ing strength required to provide good agreement with
experimental odd-even mass differences is significantly
larger than the neutron strength, V p

0 /V
n
0 ≈ 1.1, and this

is consistent with the results of the global survey [27].
The large effect of Coulomb correlations on Jpp, mani-
festing itself through the difference between Belyaev and
TV proton pairing rotational inertia, confirms the con-
clusion of Ref. [48] that the Coulomb substantially sup-
presses proton pairing.

The density and momentum dependence of the pair-
ing functional are not well known because standard ob-
servables probing pairing channel, such as odd-even mass
staggering or moments of inertia of deformed nuclei, show
weak sensitivity to details. In this context, the pairing
rotational inertia of single-shell-closed nuclei can serve as
a good indicator of the pairing interaction. The results
of calculations for semi-magic nuclei in Fig. 2, based on
pairing fitted to experimental odd-even mass differences,
are fairly similar for volume-, mixed-, and surface-pairing
variants, except for very neutron-rich nuclei where the
surface pairing gives appreciably lower values of Jnn. Of
particular interest is the behavior of the pairing rota-
tional inertia in the very neutron-rich Ca isotopes be-
yond 56Ca, where the pairing functional of volume type
yields a 1.5− 2 times larger value of Jnn than the mixed
pairing interaction. Mass measurements of even-even Ca
isotopes beyond N = 36 will be useful to better con-
strain the density dependence of the pairing EDF. Cal-
culations employing the traditional EDFs such as SLy4
[49] and SkM∗ [50] show worse agreement with experi-
ment as compared to UNEDF1-HFB. The latter has been
carefully optimized to remove the large systematic errors
affecting global binding energy trends [22]. It is clear,
therefore, that to reveal the nature of the pairing func-
tionals through pairing rotational inertia one needs to
start from the well-fitted EDFs in the particle-hole sec-
tor.

Finally we discuss doubly-open-shell nuclei. When
both neutrons and protons show a pair condensate, there
exist two NG modes whose eigenmodes are linear combi-
nations of the neutron and proton pairing rotations [34].
In Fig. 3, we show the full pairing rotational moment of
inertia tensor for the Er isotopes and N = 100 isotones.
Both examples are representative of well deformed, open-
shell nuclei with static neutron and proton pairing. Our
calculations give excellent agreement with experiment for
the full pairing rotational inertia tensor. In general, the
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FIG. 3. (Color online). Pairing rotational moments of inertia
Jnn (top), Jnp (middle), and Jpp (bottom) for open-shell Er
isotopes (left) and N = 100 isotones (right) exhibiting static
neutron and proton pairing.

sensitivity to the density dependence of pairing interac-
tion is fairly weak except for very neutron-rich (proton-
deficient) nuclei.

The off-diagonal moment of inertia Jnp shows quanti-
tative agreement with the experimental data. We empha-
size that the example shown in Fig. 3 represents the first
systematic calculation of the off-diagonal inertia for two-
dimensional pairing rotation, which was seen as a tilted
energy kernel in the gauge space in Ref. [51]. The agree-
ment with experiment confirms that the two pairing-
rotational NG modes are indeed mixed through the resid-
ual interaction in QRPA. Another interesting aspect of
Jnp is that the inverse of this quantity is formally equiv-
alent – up to a trivial shift (Z → Z+ 2, N → N + 2) – to

the mass indicator −δVpn [52], often referred to as, and
interpreted in terms of, the empirical proton-neutron in-
teraction energy. Indeed, in the extreme shell model pic-
ture, δVpn represents the net interaction of the last two
valence neutrons with the last two valence protons [53–
56]. While the large-scale superfluid DFT calculations of
δVpn generally match the experimental data on the dou-
ble binding-energy difference (5) [57], the direct inter-
pretation of this quantity in terms of the valence proton-
neutron interaction is under debate [58]. As pointed out
in Ref. [57], while the value of δVpn averaged over many
states (shells) approximates probes the bulk symmetry
energy term of the EDF, the local behavior of δVpn car-
ries important information about shell effects and many-
body correlations. The relation (5) between Jnp and δVpn

sheds new light on the interpretation of this quantity in
doubly open-shell nuclei; in those nuclei, δVpn represents
the simultaneous spontaneous breaking of the neutron
and proton gauge symmetries of the T = 1 pairing. In
this respect, we would question the findings of Ref. [55]
that the pairing energy plays a relatively minor role in
understanding of δVpn.

Conclusions — We show that the T = 1 pairing rota-
tional moments of inertia of semi-magic and doubly-open-
shell nuclei can be described qualitatively within the NG
formalism of the broken gauge symmetry. Since the ex-
perimental mass difference relation representing the pair-
ing inertia tensor is solely based on binding energies of
even-even nuclei, it is an excellent indicator of nuclear
pairing properties. In many respects, Jττ ′ is superior
to other quantities commonly used to inform us about
the magnitude of pairing correlations, such as odd-even
mass differences, which involve properties of odd-mass
systems that depend on poorly known time-odd fields
impacting individual orbits blocked by an odd nucleon.
Furthermore, we demonstrate that the pairing rotational
inertia tensor can be directly expressed in terms of the
binding energies differences δ2n, δ2p, and δVpn - all tra-



5

ditionally regarded as signatures of the valence nucleon
properties in the shell model picture. We now propose a
unified interpretation of these quantities in terms of the
gauge symmetry breaking associated with the collective
T = 1 pairing phases. Of course, for nuclei close to shell
or subshell closures, with weak pairing correlations, the
traditional single-particle interpretation is expected to be
more appropriate.

We present the first systematic analysis of the off-
diagonal pairing rotational moments of inertia Jnp, and
demonstrate the mixing of the neutron and proton pair-
ing rotational modes in the ground states of open-shell
even-even nuclei. Our analysis of isotopic and isotonic
chains indicates that the pairing rotational moments of
inertia of neutron-rich nuclei can be used to constrain
the pairing functional of nuclear DFT. In this context,
mass measurements of very neutron-rich isotopes are ex-
tremely desirable. Theoretically, clarifying the role of the
missing neutron-proton contribution of the T = 1 pair-
ing functional to Jnp within the isospin invariant EDF
[19, 59, 60] and clarifying the role of various microscopic
aspects (effective masses, density dependence, the role of
polarization effects, etc.) [12, 13, 61] will be an exciting
subject for future investigations.
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Awards No. DE-SC0013365 (Michigan State University)
and No. DE-SC0008511 (NUCLEI SciDAC-3). Numeri-
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System at the Center for Computational Sciences, Uni-
versity of Tsukuba.
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