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We discuss non-standard interpretations of the 750 GeV diphoton excess recently reported by the
ATLAS and CMS Collaborations which do not involve a new, relatively broad, resonance with a
mass near 750 GeV. Instead, we consider the sequential cascade decay of a much heavier, possibly
quite narrow, resonance into two photons along with one or more additional particles. The resulting
diphoton invariant mass signal is generically rather broad, as suggested by the data. We examine
three specific event topologies — the “antler”, the “sandwich”, and the 2-step cascade decay, and
show that they all can provide a good fit to the observed published data. In each case, we delineate
the preferred mass parameter space selected by the best fit. In spite of the presence of extra particles
in the final state, the measured diphoton pr spectrum is moderate, due to its anti-correlation with
the diphoton invariant mass. We comment on the future prospects of discriminating with higher
statistics between our scenarios, as well as from more conventional interpretations.

PACS numbers: 14.80.-j,12.60.-1

Introduction. Recently, the ATLAS and CMS Col-
laborations have reported first results with data obtained
at the Large Hadron Collider (LHC) operating at 13
TeV. The data shows an intriguing excess in the inclusive
diphoton final state [1, 2]. The ATLAS Collaboration
further reported that about 15 events in the diphoton
invariant mass distribution are observed above the Stan-
dard Model (SM) expectation at 3.9¢ local significance
(2.30 global significance) with 3.2 fb~! of data. The ex-
cess appears as a bump at M ~ 750 GeV with a relatively
broad width I' ~ 45 GeV, resulting in I'/M ~ 0.06 [1].
Similar results are reported by the CMS Collaboration
for 2.6 fb~! of data — there are about 10 excess events
at a local significance of 2.60 (2.00) assuming a narrow
(wide) width [2]. The anomalous events are not accompa-
nied by significant extra activity, e.g. missing transverse
energy Fr [3]. The required cross section for the excess
is ~ 10 fb at 13 TeV, and so far no indication of a similar
excess has been observed in other channels.

While waiting for the definitive verdict on this anomaly
from additional LHC data, it is fun to speculate on new
physics scenarios which are consistent with the current
data. Since the excess was seen in the diphoton invariant
mass spectrum, the most straightforward interpretation
would involve the production of a resonance with mass
near 750 GeV, which decays directly to two photons. The
relative broadness of the observed feature would imply
that this resonance has a relatively large width, creating
some tension with its non-observation in other channels.
Since the initial announcement, many models along those
lines have been proposed, e.g. in the context of extended
Higgs sectors [4], supersymmetry [5], extra dimensions
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FIG. 1:  The event topologies with two photons v (wavy
lines) and up to two additional particles x; (dashed lines)
under consideration in this letter: (a) antler, (b) sandwich,
and (c) 2-step cascade decay. Solid lines correspond to heavier
resonances (A, B;).

[6], strong dynamics [7], or effective field theory [8].

In this letter, we entertain a different interpretation of
the diphoton excess in the context of a sequential cas-
cade decay of a much heavier, possibly quite narrow, res-
onance, resulting in a final state with two photons and
one or two additional particles (see also [9]). Three spe-
cific examples of such simplified model [27] event topolo-
gies are exhibited in Fig. 1: an “antler” topology [13] in
Fig. 1(a), a “sandwich” topology [14] in Fig. 1(b) and
a 2-step cascade decay in Fig. 1(c¢). In such scenarios,
the resulting diphoton invariant mass m., is typically
characterized by a somewhat broad distribution, which
eliminates the necessity of an intrinsically broad reso-
nance. Furthermore, the peak of the m., distribution
is found near the upper kinematic endpoint, making it
likely that the first signal events will be seen at large in-
variant mass, while the low mass tail remains buried un-
der the steeply falling SM background. Interestingly, for



signal events with the required extreme values of m.., the
transverse momentum of the diphoton system pJ.” turns
out to be rather moderate, due to its anti-correlation
with the diphoton mass m,,. Given the small signal
statistics (O(10) events) such cascade decays may easily
fake the standard diphoton resonance signature, and de-
serve further scrutiny. We note that this observation is
not restricted to the diphoton channel, but is quite gen-
eral and applicable to any inclusive resonance search in
a two-body final state.

Diphoton invariant mass spectrum. We first re-
view the diphoton invariant mass distributions corre-
sponding to the above-mentioned three event topologies
from Fig. 1. The differential distribution of the diphoton
invariant mass m = m.,

aN
dm

is known analytically (see, e.g., [15]) and is simply a func-
tion of the unknown masses M4, Mp, and M,,. The
kinematic endpoint (henceforth denoted as E) is defined
as the maximum value of m allowing a non-zero f(m),
ie., E = max{m}.

Ignoring for the moment spin correlations and assum-
ing pure phase space distributions, the shape in the case
of the antler topology of Fig. 1(a) is given by [13]

nm, 0<m<e "E,
f(m) ~ C
min(E/m), e "E<m<E,

= f(ma My, MBi’ MXi,) (1)

(2)

where the endpoint E and the parameter n are defined
in terms of the mass parameters as

= \/ en(Mg, — M2 ) (Mg, — MZ,)/(Mp, Mg,) , (3)
n = cosh™! [(M3 — M3, — M3,)/(2Mp, Mp,)] . (4)

The corresponding shape for the sandwich topology is
given by the same expression (2), only this time E and 7
are defined as follows [15]:

B = \Jer(M3 = M, ) (M3, = M3,)/ (M, Ms,) (5)
n = cosh™" [(MB, + Mg, — M} )/(2Mp, Mp,)] .(6)

In both cases, for small enough values of 7, the peak
location e~ F can be arbitrarily close to the endpoint FE.

Finally, the two-step cascade decay has the well-known
triangular shape

f(m) ~m, (7)

where the distribution extends up to

E = /(M3 - MB)(ME, — M2)/M3. (8)

For all three event topologies in Fig. 1 (assuming small
enough values of 7 in (2)), the distributions are charac-
terized by a relatively broad peak near the kinematic

endpoint, and a continuously falling tail to lower values
of m. Given that the SM background distribution for
M.~ is a very steeply falling function, the low m tail can
be easily hidden in the background, and the only feature
of the signal distribution which would be visible in the
early data is the peak itself.

Signal models. For the numerical studies below we
choose the following signal models realizing the topolo-
gies of Fig. 1. In the antler topology of Fig. 1(a),
the particle A (B;, x;) is a scalar (fermion, fermion),
and the fermion coupling to the photon is vector-like,
~ Bial‘”XiFW, where F),, is the photon field strength
tensor. For the sandwich topology of Fig. 1(b), particle
A is a heavy U(1) vector boson with field strength ten-
sor F},,, which couples to a scalar By as ~ B1F}, ",
while Bs and x; are fermions with vector-like couplings
to photons as before. Finally, in the two-step cascade
decay of Fig. 1(c), A and x are vector particles coupling
to a scalar B as above. In all three cases, the dipho-
ton invariant mass distribution is given by the analytical
results of the previous section [16].

Data analysis. Given the analytical results (2-8)
from the previous section, we now try to fit the three
models from Fig. 1 to the m,, spectrum data reported
by the ATLAS Collaboration [1] (black dots in Fig. 2).
To describe the background portion in the data, we in-
troduce the same background model function as in [1]:

fog(x;b,a) = (1 — x1/3)bx“, (9)

where a and b are fit parameters to be determined by
data and z = m//s with /s = 13TeV. We then
perform likelihood fits using combined signal + back-
ground templates using f(m) from Egs. (2, 7) and fy4(m)
from Eq. (9). Our fit results for the case of Fig. 1(a-b)
(Fig. 1(c)) are shown in the upper (lower) panel of Fig. 2.
The red solid curves represent the best-fit models (i.e.,
signal+background), while the red dashed (blue solid)
curves describe their background (signal) components.
To estimate parameter errors more carefully with low
statistics, we generate 10,000 pseudo data sets via ran-
dom samplings of the data point in each bin, assuming a
Poisson distribution with its mean value parameter set to
the number of events in each bin reported by the ATLAS
collaboration (any zero bins in the real data were always
sampled to be 0). We then conduct the same fit proce-
dure explained above for all pseudo data sets and obtain
distributions of fitted model parameters, from which we
extract mean values and 1o confidence intervals, along
with reduced x? distributions.

For the antler and sandwich cases, the relevant re-
duced x? distribution yields a mean (median) value of
0.98 (0.93) with the Gaussian width around 1, indicat-
ing that our fitting template accommodates pseudo data
samples well enough. The extracted best-fit parameter
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FIG. 2:  Upper panel: the ATLAS diphoton data (black

dots) and our fit results with the antler and sandwich event
topologies, Eq. (2). The red solid curve represents the best-fit
signal plus background distribution. The blue dashed (green
dashed) curve represents the best-fit Monte Carlo event distri-
bution in the antler (sandwich) case after incorporating the
ATLAS analysis cuts. Lower panel: the same, but for the
2-step cascade decay of Fig. 1(c).

values and their 1o errors are

n=0.032275026 B =827.0730% GeV.  (10)

Due to the set of cuts applied in the ATLAS analysis to
suppress the SM backgrounds, the resulting signal dis-
tributions could be distorted. In order to account for
those effects, we simulate single production of particle
A at LHC13 with MadGraph5_aMC@NLQ [17], followed by
Pythia 6.4 [18] and Delphes 3 [19]. We take M4 = 1.7
TeV and the remaining masses are chosen in accordance
with the best-fit £ and n from Eq. (10). Since the antler
and the sandwich scenarios have, in principle, differ-
ent cut-sensitivity, we show the corresponding distribu-
tions with the blue (antler) and green (sandwich) dashed
curves in the upper panel of Fig. 2.

For the two-step cascade scenario, the relevant reduced
x? distribution shows a mean (median) value of 0.69
(0.67) with the Gaussian width around 0.5, indicating
that this model also reproduces the data well enough.
The best-fit value for E and its 1o error are reported as

E =1810.27327 GeV. (11)

As before, the signal distribution after cuts is shown by
the blue dashed curve in the lower panel of Fig. 2.
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FIG. 3: Left panels: the allowed mass regions at 1o, selected
by the best-fit. Right panels: temperature plots showing the
correlation between m~, and pJ’, using parton-level Monte
Carlo events with a representative mass spectrum consistent
with the best-fit values in Egs. (10) and (11).

Discussions and outlook. Since the number of ex-
perimentally measurable parameters for the antler topol-
ogy is two (namely, n and E) [15], the underlying mass
spectrum is not fully determined. However, a phe-
nomenologically motivated scenario is the case where the
decay is symmetric, i.e., By = By and x1 = x2. We then
have three input mass parameters, two of which can be
given as functions of the third mass, using the measured
values for n and E. Taking M, as a free parameter, we
find that M4 and Mp can be expressed as follows:

Mp = (e‘"/2E+,/e*’7E2+4M§)/2, (12)
My = \/QM,%(coshn—&-l). (13)

The upper-left panel of Fig. 3 displays the corresponding

1o mass ranges for the A (blue region and curves) and B

(red region and curves) particles as a function of M,,.
For the sandwich topology of Fig. 1(b), we can simi-



larly reduce the number of input mass degrees of freedom
by considering the simple case of x; = x2 as a well-
motivated phenomenological scenario. Then, using the
measurements (10), we can predict the masses of two of
the unknown particles, say Mp, and Mp,, as a function
of the other two, M4 and My, as shown in the middle
left panel of Fig. 3 (Mp, only for illustration).

Finally, for the two-step cascade topology of Fig. 1(c),
only one parameter, Eq. (11), can be measured from the
data. This provides one relation among the three un-
known masses M4, Mp and M,, which is depicted in
the bottom left panel of Fig. 3.

We have seen that the cascade event topologies from
Fig. 1 can provide a good fit to the diphoton invariant
mass spectrum in Fig. 2. It is therefore natural to ask,
what other kinematic variables of the diphoton system
can be used to test our hypothesis. One such possibility
is the transverse momentum of the diphoton system, p;.’,
since it is sensitive to other objects recoiling against the
two photons. However, there exists an inverse correlation
between the two diphoton kinematic variables, m.~ and
py’, as illustrated in the right panels of Fig. 3: events
with extreme values of m.. have relatively small p).” and
vice versa. The anti-correlation trend is especially pro-
nounced for the antler event topology, as demonstrated
in the left panel of Fig. 4, where we show the pJ." distribu-
tion of simulated events near the bump, m.., € (700, 800)
GeV, for 3.2 fb~! of data with the ATLAS selection cuts
[1]. For such events, the typical angular separation (in
the laboratory frame) between the two photons is antici-
pated to be large, and if the photons are almost back-to-
back, then so must be the two x’s, yielding a relatively
small net p)'. Fig. 4 is consistent with Ref. [3] and shows
that the signal events lead to a rather featureless tail
in the pJ’ distribution. With the accumulation of more
data, p.’ will eventually be a good discriminator between
the conventional resonance scenario (with relatively soft
py’) and the cascade decay scenarios considered here.

Another handle to discriminate among the competing
interpretations of Fig. 1 is provided by the photon energy
spectrum. In the conventional case of a single resonance
with a large decay width [4-8], the photon energy spec-
trum has a single peak at half the resonance mass [20, 21],
which may show a sharp kink structure if the heavy res-
onance is singly produced [22]. On the other hand, the
energy distribution for the (symmetric) antler scenario
develops a peak at a different position,

E, = (Mg — M})/(2Mp). (14)

For the other two cases, the corresponding photon spec-
trum could develop a double-bump structure depending
on the underlying mass spectrum [23]. These expecta-
tions are summarized in the right panel of Fig. 4.

As the excess was observed in the inclusive diphoton
channel [1-3], we have focused our attention primarily on
the kinematics of the diphoton system itself. Of course,
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FIG. 4: Left: p)" distribution of events (in a single pseudo-
experiment) near the bump, m., € (700,800) GeV, for the
event topology of Fig. 1(a), with the mass spectrum from
Fig. 3. Solid lines show the expected distributions. Right:
Unit-normalized photon energy distributions for the conven-
tional scenario with a heavy resonance of mass 750 GeV and
width 45 GeV (black dotted line), and the three cascade decay
scenarios: the antler topology (red solid), the sandwich topol-
ogy (blue solid), and the two-step cascade (green dotted). The
dashed vertical lines mark the expected energy-peaks.

more exclusive studies could target the detector signa-
tures of the additional particles x;. For example, if the
particles x; are stable and weakly interacting, they will
be invisible in the detector and cause missing transverse
energy Fr. The predicted Fr distribution would be sim-
ilar to the p distribution shown in Fig. 4, and at this
point seems to be disfavored by the data [3] (another con-
straint would be provided by the inclusive diphoton plus
Fr search for new physics [24]). Of course, the particles
x: could be visible, or further decay visibly themselves.
The exact nature of their signatures (and kinematic dis-
tributions) is rather model-dependent and beyond the
scope of this letter.

Finally, we note the potential impact of spin correla-
tions on our analysis. It is well-known that the overall
shape of invariant mass distributions can be distorted by
the introduction of non-trivial spin correlations [25, 20].
One could then repopulate most of the signal events in a
(relatively) narrow region around the peak, which would
further improve the fit. Let fs(m) be the relevant m.,
distribution in the presence of spin correlations. For the
antler and sandwich cases, one can write [14, 10]

m(ey + cat + c3t?), 0<m<e"E,

mleq + cst + cot? (15)
+(c7 + cgt +cot?)Int], e "E<m < E.

fs(m) ~

Here t = m?/E? and ¢; (i = 1,...,9) represent coeffi-
cients encoding the underlying spin information. For the
decay topology in Fig. 1(c), the relevant expression is
given by the first line of Eq. (15) [14, 25]:

fs(m) ~m(dy + dat + d3t?) for 0<m < E, (16)

and the presence of the additional terms beyond Eq. (7)



can also favorably sculpt the distribution in the vicinity
of the peak.

In conclusion, we investigated the nature of the anoma-
lous excesses reported by the ATLAS and CMS Col-
laborations in terms of cascade decay topologies from a
heavy, possibly quite narrow, resonance. Our scenarios
can generically accommodate a (relatively) large width of
the peak accompanied with a (relatively) small diphoton
transverse momentum. We also discussed the potential of
distinguishing the competing interpretations with more
data, using the diphoton transverse momentum and pho-
ton energy distributions. We eagerly await the resolution
of this puzzle with new data from the LHC.
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