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We introduce open-loop quantum control protocols for characterizing the spectral properties of non-Gaussian
noise, applicable to both classical and quantum dephasing environments. By engineering a multi-dimensional
frequency comb via repetition of suitably designed pulse sequences, the desired high-order spectra may be
related to observable properties of the qubit probe. We prove that access to a high time resolution is key
to achieve spectral reconstruction over an extended bandwidth, overcoming limitations of existing schemes.
Non-Gaussian spectroscopy is demonstrated for a classical noise model describing quadratic dephasing at an
optimal point, as well as a quantum spin-boson model out of equilibrium. In both cases, we obtain spectral
reconstructions that accurately predict the qubit dynamics in the non-Gaussian regime.
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Accurately characterizing the spectral properties of envi-
ronmental noise in open quantum systems has broad practi-
cal and fundamental significance. Within quantum informa-
tion processing, this is a prerequisite for optimally tailoring
the design of quantum control and error-correcting strategies
to the noisy environment that qubits experience, and for test-
ing key assumptions in fault-tolerance threshold derivations
[1]. From a physical standpoint, precise knowledge of the
noise is necessary for quantitatively modeling and understand-
ing open-system dynamics, with implications ranging from
the classical-to-quantum transition to non-equilibrium quan-
tum statistical mechanics and quantum-limited metrology [2].

Quantum noise spectroscopy seeks to characterize the spec-
tral properties of environmental noise by using a controlled
quantum system (a qubit under multi-pulse control in the sim-
plest case) as a dynamical probe [3]. In recent years, interest
in quantum noise spectroscopy has heightened thanks to both
improved theoretical understanding of open-loop controlled
dynamics in terms of transfer filter-function (FF) techniques
[4, 5] and experimental validation in different qubit platforms.
In particular, quantum control protocols based on dynamical
decoupling (DD) have been successfully implemented to char-
acterize noise properties during memory and driven evolution
in systems as diverse as solid-state nuclear magnetic reso-
nance [6], trapped ions [7], superconducting [8] and spin [9]
qubits, and nitrogen vacancy centers in diamond [10].

Despite the above advances, existing noise spectroscopy
protocols suffer from several disadvantages. Notably, they
are restricted to classical, Gaussian phase noise. While de-
phasing (T2-) processes are known to provide the dominant
decoherence mechanism in a variety of realistic scenarios,
the Gaussianity assumption is a priori far less justified. On
the one hand, the Gaussian approximation typically breaks
down in situations where the system is strongly coupled to a
sparse environment – such as discrete frequency modes [7], or
bistable fluctuators responsible for 1/f noise, as ubiquitously
encountered in solid-state nanodevices [11]. Even for environ-
ments well described by a continuum of modes, non-Gaussian

noise statistics may be generally expected away from thermal
equilibrium, or whenever symmetry considerations forbid a
linear coupling [12]. In all such cases, accurate noise spec-
troscopy mandates going beyond the Gaussian regime.

In this paper, we introduce open-loop control protocols for
characterizing stationary, non-Gaussian dephasing using a
qubit probe. Our approach is applicable to classical noise en-
vironments and to a paradigmatic class of open quantum sys-
tems described by linearly coupled oscillator environments –
as long as all noise spectra are sufficiently smooth. While
we build on noise spectroscopy by sequence repetition as pro-
posed by Alvarez and Suter [6], our central insight is to lever-
age the structure of FFs in the dephasing setting to estab-
lish the emergence of a frequency comb for arbitrary high-
order noise spectra (so-called polyspectra), paving the way
to the desired multi-dimensional spectral estimation. We first
demonstrate the power of our approach for Gaussian noise,
where we extend the range of spectral reconstruction over
existing protocols. For non-Gaussian noise, we reconstruct
the spectra associated with the leading high-order cumulants,
absent in the Gaussian limit. Quantitative prediction of the
qubit’s free evolution in the presence of these non-Gaussian
environments reveals how, in both the classical and quantum
case, polyspectra are essential to capture additional dynamical
contributions unaccounted for in the Gaussian regime.

Control setting and noise polyspectra.– We consider a qubit
S coupled to an uncontrollable environment (bath) B. In the
interaction picture with respect to the bath Hamiltonian, HB ,
and the qubit Hamiltonian, HS = ~ω0σz/2, the joint sys-
tem is described by H(t) = ~σzB(t)/2 +Hctrl(t), where the
first term accounts for the bath-induced dephasing andHctrl(t)
is the external open-loop control, acting non-trivially on the
qubit alone. For a classical bath, B(t) is a stochastic pro-
cess, whereas B(t) is a time-dependent operator for a quan-
tum bath. The applied control consists of repeated sequences
of π-pulses (say, about x), which for simplicity we take to
be instantaneous. After transforming to the interaction pic-
ture associated with Hctrl(t), the joint Hamiltonian becomes
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H̃(t) = y(t)~σzB(t)/2, where the “switching function” y(t)
toggles between ±1 with every π-pulse applied to the qubit.

The effect of dephasing is seen in the dynamics of
the qubit’s coherence element, which we may express in
terms of bath-operator cumulants. Specifically, 〈σ+(t)〉 =
〈σ+(0)〉 e−χ(t)+iφ(t), where the decay parameter and phase
angle are respectively given by:

χ(t) =

∞∑
`=1

(−1)`

(2`)!
Υ(2`)(t), φ(t) =

∞∑
`=1

(−1)`

(2`+ 1)!
Υ(2`+1)(t),

Υ(k)(t) ≡
∫ t

0

dt1 . . .

∫ t

0

dtk y(t1) . . . y(tk)C(k)(t1, . . . , tk).

The kth-order cumulant C(k)(t1, . . . , tk) depends on the bath
correlation functions

〈
B(t1) . . . B(tj)

〉
, j ≤ k, and

〈
·
〉

de-
notes a classical ensemble average or an expectation value
with respect to the initial bath state, ρB(0), in the quantum
case. For zero-mean Gaussian noise, C(k)(t1, . . . , tk) ≡ 0
except for k = 2. Thus, Gaussian noise gives no phase evolu-
tion. For non-Gaussian noise, higher-order even (odd) cumu-
lants contribute to decay (phase evolution), respectively.

For stationary noise, where C(n+1)(t1, . . . , tn+1) is a func-
tion of the time separations τj ≡ tj+1−t1, j ∈ {1, . . . , n}, the
noise spectral properties are fully characterized by the Fourier
transforms of the cumulants with respect to {τj}. Letting
~vn ≡ (v1, . . . , vn), the nth-order polyspectrum is

Sn(~ωn) ≡
∫
Rn

d~τn e
−i~ωn·~τnC(n+1)(~τn), n ≥ 1, (1)

where S1(~ω1) ≡ S(ω) is the familiar power spectral den-
sity (PSD), and S2(~ω2) and S3(~ω3) are known as the “bi-
spectrum” and “tri-spectrum”. For all orders, Sn(~ωn) is a
smooth n-dimensional surface when the noise is classical and
ergodic [13]. In general, C(n+1)(t1, . . . tn+1) may depend on
fewer than n time separations, leading to the presence of delta
functions in Sn(~ωn). All polyspectra possess a high degree of
symmetry, irrespective of the noise. That is, Sn(~ωn) is fully
specified in all frequency space by its value on a particular
subspace, Dn, known as the principal domain [14].

Noise spectroscopy protocol.– Our objective is to charac-
terize not only the PSD but the polyspectra. We accomplish
this by generalizing the DD noise spectroscopy protocol pro-
posed in [6] for Gaussian noise. This protocol relies on rep-
etitions of identical base sequences, whose duration (“cycle
time”) we shall denote by T . Following [5], the effect of a
base control sequence p in the frequency domain is character-
ized by a single fundamental FF, Fp(ω) ≡

∫ T
0
dte+iωtyp(t).

If |~ωk−1| ≡ ω1 + . . .+ ωk−1, direct calculation shows that M
repetitions of p yield

Υ
(k)

[p]M
=

∫
Rk−1

d~ωk−1

k−1∏
j=1

Fp(ωj)
sin(MωjT/2)

sin(ωjT/2)

× Fp(−|~ωk−1|)
sin(M |~ωk−1|T/2)

sin(|~ωk−1|T/2)

Sk−1(~ωk−1)

(2π)k−1
,

(2)

The key to extending the protocol in [6] beyond Gaussian
noise (k = 2) is to realize that repetition produces a multi-
dimensional frequency comb for all orders, namely,

k−1∏
j=1

[ sin(MωjT/2)

sin(ωjT/2)

] sin(M |~ωk−1|T/2)

sin(|~ωk−1|T/2)
(3)

≈M
k−1∏
j=1

[2π

T

∞∑
nj=−∞

δ
(
ωj−

2πnj
T

)]
, M � 1,∀k,

provided that Sk−1(~ωk−1) in Eq. (2) is a smooth function.
Thanks to the “hyper-comb” in Eq. (3), obtaining the

polyspectra becomes an inverse problem. Substituting Eq.
(3) into Eq. (2) produces a linear equation that couples the
polyspectra and the FFs evaluated at the harmonic frequen-
ciesHj ≡ {2π~nj/T |~nj ∈ Zj},

Υ
(k)

[p]M
=
∑

~hk−1∈Hk−1

M

T k−1

k−1∏
j=1

Fp(hj)Fp(−|~hk−1|)Sk−1(~hk−1). (4)

To obtain a finite linear equation, we need to truncate the
above sum to a finite set Ωk−1. With no prior knowledge of
the noise, it suffices to consider Ωk−1 ⊂ Dk−1 ∩ Hk−1 in the
principal domain of the polyspectrum. Using the truncated ex-
pression in Eq. (4) enables us to relate the sampled polyspec-
tra to experimentally observable dynamical quantities, that is

χ[p]M ≈
∞∑
`=1

(−1)`M

(2`)!T 2`−1

∑
~h2`−1∈Ω2`−1

m2`−1(~h2`−1)

×
2`−1∏
j=1

Fp(hj)Fp(−|~h2`−1|)S2`−1(~h2`−1), (5)

φ[p]M ≈
∞∑
`=1

(−1)`M

(2`+ 1)!T 2`

∑
~h2`∈Ω2`

m2`(~h2`)

×
2∏̀
j=1

Fp(hj)Fp(−|~h2`|)S2`(~h2`), (6)

where the multiplicity mn(~hn) ≡ card{~hn ∈ Rn |Sn(~hn) =
Sn(~ωn), ∀ωn ∈ Dn} accounts for the symmetry of the
polyspectrum. When contributions from high-order correla-
tion functions are negligible (e.g., for sufficiently small time
and/or noise strength), the cumulant expansion in Eqs. (5)-(6)
may be truncated at ` = L. If N terms are retained, measur-
ing χ[p]M (φ[p]M ) for at least N control sequences creates a
system of linear equations, that can be inverted to obtain the
odd (even) polyspectra up to order 2L− 1 (2L) [15].

Base sequence construction.– In the noise spectroscopy
protocol of [6], a fixed base sequence is used (CPMG, after
Carr, Purcell, Meiboom, and Gill), with cycle times varying
from T to T/n = 2τ , where n ∈ Z+ and τ is the minimum
time between pulses. While this produces a well-conditioned
linear inversion, both the number of distinct control sequences
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and the range of spectral reconstruction are limited – in par-
ticular, |ω| ≤ π/τ for a minimum allowed τ > 0. The use of
a fixed DD sequence has an additional disadvantage: CPMG
refocuses static noise (Fcpmg(ω = 0) = 0, hence the “filtering
order” is non-zero [5]), precluding reconstruction at any point
in frequency space containing a zero, a substantial informa-
tion loss for higher-dimensional polyspectra.

Non-Gaussian noise spectroscopy demands a large number
of sequences with spectrally distinct FFs, including some with
zero filtering order. We generate a family of base sequences
satisfying these requirements by using different orders of con-
catenated DD, CDDm: namely, not only CPMG (m = 2),
but also durations of free evolution (m = 0), up to m = 5.
The presence of free evolution permits sequences with zero
filtering order, enabling the polyspectra to be reconstructed at
points containing a zero. Specifically, let a fixed cycle time
T be expressed in terms of a minimum time resolution δ,
T ≡ qδ, where q ∈ Z+. While all pulse times will be in-
teger multiples of δ, δ and τ are two independent constraints
a priori, with δ < τ typically. If q ≡

∑
i qi is an integer par-

tition of q, we place a CDDm sequence into the ith interval,
of duration qiδ, subject to the condition that no two pulses are
separated by less than τ . As shown in the Supplement [16],
the range of spectral reconstruction is bounded by |ω| ≤ π/δ.
A high resolution (small δ) is key to generate sequences with
incommensurate periodicities, making it possible to achieve
spectral reconstruction over an extended range.

The added capabilities of our control sequences may be ap-
preciated already for spectroscopy of classical Gaussian noise,
see Fig. 1. In this case, Eq. (5) truncates exactly at ` = 1;
this produces a system of linear equations relating the desired
PSD to χ[p]M , which we obtain numerically for each control
sequence. In addition to accurately reconstructing the larger
peaks over the expanded range |ω| ≤ 48π/T = 3π/τ , our
protocol successfully resolves the small peak at ω = 0, thanks
to inclusion of control sequences with zero filtering order.

Non-Gaussian spectral reconstructions.– We now return to
our main goal, namely characterizing non-Gaussian polyspec-
tra. As a first example, we consider a classical “square
noise” process arising from a quadratic coupling to a Gaussian
source, as encountered in superconducting qubits operating at
an optimal working point [11, 17]. That is, B(t) ≡ ξa(t) =
a
(
g(t)2 −

〈
g(t)2

〉)
+
(
1− a

)
g(t), where g(t) is a zero-mean

Gaussian process, and a ∈ [0, 1] interpolates between Gaus-
sian (a = 0) and fully non-Gaussian (a = 1) regimes. Trun-
cating Eq. (6) at the leading ` = 1 term allows us to recon-
struct the bi-spectrum S2(~ω2) from numerically determined
values of φ[p]M . Here, the relevant principal domain D2 is
an octant bounded by ω1 = ω2 and ω1 = 0. Reconstruct-
ing 35 points in D2 enables us to obtain S2(~ω2) at 325 points
in R2. Representative results for the actual vs. reconstructed
bi-spectrum at a = 1 are shown in Fig. 2(a)-(b). The rela-
tive error in 2(c) indicates very good agreement at the interior
points, but larger error in the tails. Because there is minimal
spectral concentration in the tails, however, this error has lit-
tle effect on the qubit dynamics. As Fig. 3 shows, excellent

FIG. 1. (Color online) Comparison between Alvarez-Suter’s (red
diamonds) and our protocol (blue dots) in reconstructing a Gaussian
PSD (black solid line) with increasing high-frequency components
(top to bottom). Both protocols useM = 50 repetitions of sequences
with τ = 3.1×10−4 s and T = 16τ . For our protocol, we employ 25
base sequences assembled from CDDm, m = 0, . . . , 4. The PSD is
a sum of Lorentzian peaks, S(ω) = w1/[1 + (8ω/ωc)]

2+w2/{1+
[8 (sign(ω)ω − d)/ωc)

2]}, where w1/
√
2π = 0.1 kHz, w2/

√
2π =

1 kHz, ωc = 10 kHz ≈ π/τ , and d controls the offset of the high-
frequency peaks, d = 5

8
π/τ (a), d = 10

8
π/τ (b), d = 15

8
π/τ (c).

As the original protocol can only reconstruct S(ω) up to |ω| < π/τ
(dashed vertical lines), it cannot “see” the high-frequency peaks in
(b)-(c), which results in instability at lower frequencies.

agreement is found between the theoretical phase evolution
and the one predicted by the reconstructed bi-spectrum.

Extending noise spectroscopy to quantum environments
entails qualitatively new challenges because non-Gaussian
statistics ensues from the combined effect of the bath oper-
ators B(t) and the initial bath state ρB(0), and no general
characterization of quantum polyspectra (and their smooth-
ness properties) is available to our knowledge. We take a
first step in this direction by focusing on linearly coupled
spin-boson environments, whereby HB = ~

∑
k Ωka

†
kak and

B(t) =
∑
k(gke

iΩkta†k + h.c.), with ak, a
†
k being canonical

bosonic operators and Ωk, gk having units of (angular) fre-
quency. For a general quantum bath, the noise is stationary
if and only if [HB , ρB(0)] = 0. This prevents non-zero odd
cumulants, hence the qubit undergoes no phase evolution.

Given any stationary, non-Gaussian bath state ρB(0) we
can reconstruct spectral quantities associated with the first
two leading-order even cumulants, S(ω) and S3(~ω3). Al-
though S(ω) is asymmetric about ω = 0, the fact that ar-
bitrary FFs enter through even combinations implies that
we can only reconstruct an “effective spectrum”, Seff(ω) ≡
[S(ω) + S(−ω)]/2, as relevant to the qubit dephasing dy-
namics. As shown in [16], the tri-spectrum for any non-
separable, stationary initial bath state has the form S3(~ω3) =
(2π)3[δ(ω1 +ω2)J3(ω1, ω3)+δ(ω2 +ω3)J3(ω1, ω2)+δ(ω1+
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FIG. 2. (Color online) Actual bispectrum, S2(~ω2) (a), vs. reconstructed bispectrum, SR
2 (~ω2) (b), and relative error E(~ω2) ≡ [SR

2 (~ω2) −
S2(~ω2)]/S2(~ω2) (c), for classical non-Gaussian square noise ξ1(t) = g(t)2 −

〈
g(t)2

〉
. Here, g(t) is Gaussian with spectrum Sg(ω) =

w1/[1 + 8(ω/ωc)
2] + w2/[1 + 16 (sign(ω)ω/ωc − 3/2)2], and w1 = 1/10 Hz, w2 = 1/25 Hz. The protocol uses M = 40 repetitions of

sequences composed of CDD0−5, with τ = 3.95× 10−5 s and T = 32τ to reconstruct the bi-spectrum at 325 points. Grid lines in (a) and (b)
are drawn at harmonic frequencies. In (b), these values have been smoothed with a spline interpolation. The largest relative errors occur in the
high-frequency regions at the outer edge of the bi-spectrum which, however, contribute far less to the qubit dynamics.

FIG. 3. (Color online) Phase evolution and decay (inset) of a qubit
under square noise ξa(t) with different degrees of Gaussianity [see
text], and same spectrum Sg(ω) for g(t) as in Fig. 2. Curves are or-
dered according to decreasing non-Gaussianity: a = 1 (blue solid),
a = 0.7 (red dashes) and a = 0.4 (green dots). For the fully non-
Gaussian a = 1 case, we used the reconstructed spectrum and bi-
spectrum [Fig. 2] to predict the qubit decay and phase evolution (blue
asterisks), showing excellent agreement with the theoretical evolu-
tion, computed up to the fifth-order cumulant.

ω3)J3(ω2, ω3)]. Because the hypercomb approximation holds
only if S3(~ω3) is smooth, we cannot directly reconstruct
it. We can, however, reconstruct the “effective tri-spectrum”
J3(~ω2), provided it is smooth. Due to the delta functions in
S3(~ω3), the terms in Eq. (5) associated with the tri-spectrum
differ by a constant factor in the spin-boson case. The appro-
priate modified equations are derived in [16], along with sim-
ilar equations for separable stationary initial states. In the ab-
sence of prior information about ρB(0), comparison between
predictions based on the two resulting reconstructions will en-
able the correct effective tri-spectrum to be inferred.

For illustration, we choose ρB(0) to be a non-Gaussian,
non-separable state corresponding to far-from-equilibrium
conditions, and simultaneously reconstruct Seff(ω) and
J3(ω1, ω2) by numerically determining χ[p]M and inverting
the appropriate system of linear equations [16]. To test the
accuracy of our reconstructions, we again predict the dynam-
ics of the qubit under free evolution. As shown in Fig. 4(a),
taking into account the non-Gaussianity of the noise by re-
constructing both the effective spectrum and tri-spectrum im-
proves the prediction by almost an order of magnitude in time.
Because our non-Gaussian prediction uses only spectral quan-

FIG. 4. (Color online) Qubit decay under non-Gaussian spin-boson
dephasing (a), relative strengths of the first two terms in the cumu-
lant expansion for χ(t) (b), reconstructed effective tri-spectrum (c),
with grid lines at harmonic frequencies. The non-Gaussian bath state
ρB(0) = ρT1/2 + ρT2/2, where ρT1 , ρT2 are thermal states at tem-
peratures T1 = 7.64K, T2 = 7.64 × 103K. Ohmic spectral density
J(ω) = w0|ω/ωc|e−(ω/ωc)

2

is assumed, with w0 = 0.1 nHz, ωc =
10 kHz. The curves in (a) represent theoretical decay (black solid),
decay predicted by reconstructing Seff(ω) and J3(ω1, ω2) (grey as-
terisks), and decay predicted by reconstructing Seff(ω) only (Gaus-
sian approximation, teal squares). The non-Gaussian prediction fails
when |χ(4)(t)| (red dashes) and |χ(2)(t)| (blue dashes) in (b) become
comparable. All reconstructions usedM = 50 repetitions of 21 base
sequences composed of CDD0−5, with τ = 3.44×10−5 s, T = 32τ .

tities associated with the second and fourth cumulants, how-
ever, it fails when the latter becomes comparable in size to
the second, indicating that the higher-order cumulants can no
longer be neglected (see also Fig. 4(b)).

Conclusion.– We introduced control protocols for charac-
terizing the high-order spectra associated with non-Gaussian
dephasing on a qubit coupled to a classical or quantum
bosonic environment. Our approach overcomes limitations of
existing protocols, also allowing for spectral reconstruction
over an extended bandwidth, which is of independent interest
for quantum sensing applications. Our work points to the need
for a deeper understanding of high-order quantum noise spec-
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tra – including more complex dephasing settings described by
non-linear spin-boson models or spin baths. We expect exper-
imental implementation of our protocols to be within reach
for various device technologies, in particular transmon or flux
qubits [8], where a complete spectral characterization includ-
ing high-order effects may be crucial for validating physical
noise assumptions and discriminating between different mi-
croscopic theories of the noise itself [11, 18].
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