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3Departamento de Matemática Aplicada, Universidade Estadual de Campinas, 13083-859, Campinas, SP, Brazil
4Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA

(Dated: February 18, 2016)

Smectic liquid crystals are remarkable, beautiful examples of materials microstructure, with or-
dered patterns of geometrically perfect ellipses and hyperbolas. The solution of the complex problem
of filling three-dimensional space with domains of focal conics under constraining boundary condi-
tions yields a set of strict rules, which are similar to the compatibility conditions in a martensitic
crystal. Here we present the rules giving compatible conditions for the concentric circle domains
found at two-dimensional smectic interfaces with planar boundary conditions. Using configurations
generated by numerical simulations, we develop a clustering algorithm to decompose the planar
boundaries into domains. The interfaces between different domains agree well with the smectic
compatibility conditions. We also discuss generalizations of our approach to describe the full three-
dimensional smectic domains, where the variant symmetry group is the Weyl-Poincaré group of
Lorentz boosts, translations, rotations, and dilatations.

The spatial decomposition of smectic liquid crystals
into focal conic domains gives rise to one of the most un-
usual examples of materials microstructure. The smectic
is a remarkable state of matter, breaking both the contin-
uous rotational and (one-dimensional) translational sym-
metries of the isotropic fluid [1] [2]. In the beginning
of the twentieth century, F. Grandjean and G. Friedel
inferred that smectics were lamellar materials based on
their bizarre microstructure [3]; observe the beautiful
patterns full of ellipses and hyperbolas in Fig. 1. The fig-
ure shows a two-dimensional planar boundary (the layer
surfaces lying perpendicular to the section) of a simulated
configuration of a 3D smectic A liquid crystal, mimick-
ing experiments where thin slabs of smectic samples are
placed between crossed polarizers [4]. Friedel’s break-
through came with the realization that the visible conics
could be modeled as the locus of the centers of curvature
of a set of equally-spaced layers. The smectic layers must
bend into cyclides of Dupin, which are the general set of
equally-spaced surfaces whose singular centers of curva-
ture lie along one-dimensional conics [5]. The smectic de-
composes into the so-called focal conic domains (FCDs),
which can be stabilized to mediate otherwise incompat-
ible boundary conditions, such as anchoring of a sample
boundary [6].

We propose here a theory of smectic microstructure
that generalizes and merges the laws of association be-
tween domains first proposed by G. Friedel [7] and the
mathematical theory of martensitic microstructure [8–
11]. Our theory describes both the interpolation struc-
ture proposed by Beller et al. [12] to characterize the
smectic flower textures, and Apollonius’ packings in the
FCD model of grain boundaries [6]. Smectic liquids form
the world’s weirdest martensite.

In a martensitic transformation, the phase transition
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FIG. 1. (a) Crossed-polarizer images of focal conic domains
on simulated smectics. (b) Elliptical defects attached to the
upper surface (with planar boundary conditions). Note the
hyperbolas emanating from the ellipses foci. Different focal
conic domains (cyclides of Dupin) can rotate and deform via
a Weyl-Poincaré transformation to join together compatibly
continuous smectic layers. Note also the small gaps between
the ellipses. It is energetically favorable to fill these regions
with further ellipses, recursively down to molecular scales,
leading to the ‘Apollonian packing’ microstructure. (c) Layer
sections forming concentric circles at the top boundary of the
simulation.

between different crystal structures (for instance from
cubic to tetragonal symmetry) yields a low-temperature
phase where two or more discrete configurations with dif-
ferent shape anisotropy coexist [8]. This structure was
discovered in c. 1890 by the microscopist Adolf Martens,
though some of its mechanical properties have been used
since (at least) the dawn of the Iron age. Metallurgists
and blacksmiths manipulate the martensitic microstruc-
ture (as well as the dislocation and precipitate structures)
by heating and hammering swords and horseshoes to con-
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fer toughness and strength.
Martensites are usually characterized by a striped pat-

tern, or laminate, that minimizes the constrained elastic
free energy while keeping the net strain near zero. Fig. 2
shows an example of a martensitic structure, with the
dark and light regions representing two variants of the
crystal martensite (see also SM discussion of paper fold-
ing as a martensite). The martensitic variants are akin to
the smectic domains filled with a single family of Dupin
cyclides.

FIG. 2. Experimental martensitic microstructure. Different
variants (colors) Ui can rotate via an SO(3) symmetry so as
to joint together compatibly at twin boundaries. Courtesy of
C. Chu and R. D. James [13].

In this paper, we generalize the mathematical theory
of martensites in order to study the microstructure of
smectic liquid crystals. We shall start by labeling the
energy-minimizing states and variant symmetry groups of
smectic and martensitic crystals. We then extract smec-
tic configurations from planar boundaries of our simula-
tions and apply a clustering algorithm to decompose two-
dimensional space into domains where the layers form
sets of concentric circles (Fig. 1c). We finish by a discus-
sion of some physical examples and open questions.
In a martensitic phase of a cubic to tetragonal trans-

formation, we can describe the system by the vector field
y = y(x), where x and y are the positions of a point in
reference and target spaces, respectively, and the refer-
ence space is associated with the austenite configuration.
The martensite variants are described by the gradient
tensor ∇y = ((∂yi/∂xj)), which can assume one of the
three forms:

U1 =





η2 0 0
0 1/η 0
0 0 1/η



 , U2 =





1/η 0 0
0 η2 0
0 0 1/η



 ,

U3 =





1/η 0 0
0 1/η 0
0 0 η2



 , (1)

for a uniaxial volume-conserving stretch along the three
cartesian axes. The set of energy-minimizing states con-
sists of all possible rotations of the three deformation

variants, and can be written as:

K =
3
⋃

i=1

SO(3) · Ui, (2)

where SO(3) denotes the group of three-dimensional
proper orthogonal transformations (rotations).
Similarly, smectics can be described by a scalar dis-

placement field φ = φ(x), which measures the local dis-
placements from a set of flat equally-spaced surfaces.
The smectic layers are equipotential surfaces of φ, with
the layer normals N = N(x) ≡ −∇φ. Note that
the displacement field defines a surface with constant
slope (|∇φ| = 1) in the four-dimensional ‘space-time’
({φ, x, y, z}) – forming ‘light surfaces’ in the order pa-
rameter field (see Ref. [14]). This analogy to special rel-
ativity, and the Lorentz invariance of the allowed smec-
tic domains, will be central to our proposed martensitic
analysis of 3D smectic layers.
The Dupin cyclides may be defined as the surfaces

whose centers of curvatures lie along one-dimensional
curves. Since the condition of equally spaced layers
(N2 ≡ 1) implies that the centers of curvature are
shared by subsequent surfaces, a domain filled with
Dupin cyclides allows the system to form relatively cheap
line singularities, rather than the energetically expensive
two-dimensional singular centers of curvature of typical
curved surfaces. The geometry of the Dupin cyclides fur-
thermore forces the singular curves to be conic sections
– generically ellipses and hyperbolas passing perpendic-
ularly through one another’s foci.
Before analyzing 3D smectic domains, let us analyze a

simpler case: smectic layers at a flat interface, where the
layers are constrained to approach perpendicular to the
boundary. Such planar boundary conditions are often
found at surfaces like glass slides; they are called pla-
nar because the smectic molecules (normal to the layers)
are in the plane of the boundary surface. Fig. 3 shows
the displacement field φ (top grey surface) and some lay-
ers (bottom black lines) as a function of x and y at the
top (planar) boundary of a smectic configuration (the
same used in Fig. 1). At a planar boundary, the cyclides
of Dupin form concentric circles (Fig. 1c), correspond-
ing to ‘light cones’ in the figure with space-time centers
{φ0, x0, y0}. The corresponding displacement fields can
be described in terms of two variants

U
(2)
± : φ = ±

√

x2 + y2 (3)

together with the three-dimensional group of translation
operations (two translations in space and one in time)

T (3) : {φ, x, y} → {φ− φ0, x− x0, y − y0} (4)

leading to a space of low energy structures

K(2) =
⋃

α=±

T(3) · U (2)
α . (5)
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In the full three-dimensional smectic domains, we may
not only translate and rotate the Dupin cyclide domains,
but we may also transform them under dilatations and
Lorentz boosts (which change the eccentricity of the el-
lipses and hyperbolas [14], leading [15] to the Weyl-
Poincaré group WP [16]. This group, which is a semi-
direct product of positive dilatations and Poincaré trans-
formations, is an 11 dimensional group. We can form a
general Dupin domain by the action of 9 generators of
WP (which correspond to the quotient of WP by a 2D
Abelian subgroup) on a toroidal domain, whose singular
curves are a unit circle in the xy plane and a perpendic-
ular line through its center (see section II in Supplemen-
tal Material). Since this domain is the product of two
cones, [(r + 1)2 + z2 − φ2][(r − 1)2 + z2 − φ2] = 0, with

r =
√

x2 + y2, there are four variants now [17],

U
(3)
±± : φ = ±

√

(r ± 1)
2
+ z2, (6)

hence leading to a huge space of low energy structures

K(3) =
⋃

α,β=±

WP · U
(3)
αβ . (7)

FIG. 3. Displacement field φ (top grey surface) and some of
its levels (bottom black lines) as a function of x and y for the
top planar boundary of a simulated configuration of smectic
liquid crystals. Note that each domain of concentric circles
on the bottom becomes a positive or negative light cone in
the surface defining φ(x, y).

We employ numerical simulations to generate the
smectic configurations that are used in our microstruc-
ture analysis. Our simulations describe the dynamical
evolution of the layer normal field N = N(r) along
the gradient-descent path of an elastic free energy [18].
We consider the following adaptation of the Oseen-Frank
free-energy functional [19–21]:

Fs =

∫

dr [fs(N ,∇N) + λ · ∇ ×N ] , (8)

with the energy density fs given by

fs =
B

4
(1 −N4)2 +KN2 (∇ ·N)

2

+
1

2
K24N

2∇ · [(N · ∇)N −N (∇ ·N)] , (9)

where B, K, and K24 are constants. The first term in
Eq. (9) is a compression term, which penalizes elastic
distortions of the smectic interlayer spacing. The sec-
ond and third terms are related to the usual splay and
saddle-splay distortions [1]. Notice the unusual ampli-
tude dependence (∼ N2) multiplying the K and K24

elastic terms. It originates in gradient distortions of
the form (∇Q)2, which are proportional to N2 for ne-
matic uniaxial ordering [18, 22], where Q = ((Qi j)) is
the Maier-Saupe tensorial order parameter. We also use
a Lagrange multiplier λ to forbid the existence of dis-
locations. The layer-normal field N satisfies the set of
partial differential equations:

γ Ṅ = −

(

δFs

δN
−

〈

δFs

δN

〉)

, (10)

where the angle brackets denote a spatial average and
γ is a viscosity constant. The second term of Eq. (10)
ensures that the net number of layers in the cell does
not change during a gradient descent step. Initially, we
generate a random order parameter field N , and use an
Euler integrator with adaptive control system to solve
the set of PDEs given by Eq. (10). We consider a cubic
grid with global tetragonal shape of size 256×256×64.
The elastic constants are fixed so that de Gennes’ length
scale ξ ≡

√

K/B = 0.2a, and K/K24 = −1.5, where a is
the simulation lattice spacing. In the present paper, we
only consider planar anchoring with the top and bottom
boundaries, i.e. we fix Nz = 0 at z = 0 and z = Lz. Our
code combines the versatility of Python with fast parallel
programming using CUDA. To obtain the configuration
displayed in Figs. 1, 3 and 4, we evolved N for a total
time tt ≈ 2, 000 γ/B [23]. More details of the simulations
can be found in [18].

We developed a clustering algorithm to decompose
smectic planar sections into domains with distinct cen-
ters, i.e. the low-energy structures described in Eqs. (3-
5). For each domain (we start with square clusters), we
use a least-squares optimization algorithm to find the
four-tuple Xα = (φ0,α, x0,α, y0,α, σ0,α) that minimizes
the cost function (see Supplemental Material)

Cα =
∑

i

c (ri,α, Xα), (11)

where the sum runs over points in (2 + 1)D space that
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belong to cluster α, and

c (ri, Xα) =
{

φi − φ0,α + σ0,α

[

(xi − x0,α)
2

+(yi − y0,α)
2
]1/2

}2

+

(

Nx −
xi − x0,α

di0,α

)2

+

(

Ny −
yi − y0,α
di0,α

)2

, (12)

where di0,α = [(xi−x0,α)
2+(yi−y0,α)

2]1/2 is the 2D Eu-
clidean distance from point i to the center, and σ0,α = ±1
characterizes the nappe of the cone [24]. By minimizing
the first term in the right-hand side of Eq. (12), we find
the best approximation for the local energy minimizer in
the set (5). The second and third terms make the anal-
ysis sensitive to gradient changes. The next step is to
redefine the clusters so that each pixel in (2 + 1)D space
is associated with the center that yields the least cost
c(ri, Xα). This entire process is iterated several times.
At the end, we merge a few clusters that are described
by similar parametersXα. Fig. 4 shows a plot of our clus-
ter decomposition, where each pixel is colored according
to the cluster centers Xα.

FIG. 4. Smectic microstructure of a two-dimensional planar
boundary of a 3D simulation. The intersection of smectic lay-
ers and the section form sets of concentric circles, which are
shown as thin black curves. The boundary between clusters
(blue lines) are conics satisfying suitable compatibility con-
ditions. Straight dashed lines separate domains whose ‘light
cones’ are pointed in opposite directions and just miss tan-
gency.

The colored regions in Fig. 4 are analogous to the
martensitic domains in Fig. 2. Note the elliptical do-
mains (just lower left of center) are only a small fraction
of the total area; as in many experiments, much of the re-
gion is not an Apollonian packing of focal conic domains
(and hence not described by Friedel’s laws of associa-
tion). The non-elliptical domains nonetheless appear to
be filled with cyclides of Dupin.
Finally, we turn to the compatibility conditions. In our

example of martensites (Eqs. 2 and 1), the constraint that
the field y(x) is continuous forces the boundaries between
variants to be rotated by specific angles: if ∇y = K1 =

R1Ui and K2 = R2Uj are to meet continuously along a
twin boundary (the boundaries between the lamellae in
Fig. 2), then K1 −K2 must be zero along the boundary.
What are the compatibility conditions for our smectic

concentric sphere domains at the planar boundary, al-
lowing φ(y) to be continuous? Compatible boundaries
between domains of concentric circles are the projections
of the intersection of two conic surfaces onto the xy-plane.
We can find the singular conic solutions by solving the
pair of equations:

(x− x0)
2 + (y − y0)

2 − (φ− φ0)
2 = (x− x1)

2

+(y − y1)
2 − (φ − φ1)

2, (13)

(x− x0)
2 + (y − y0)

2 − (φ− φ0)
2 = 0, (14)

for x and y. This algebraic manipulation results in the
smectic compatibility equation:

(x− x0)
2
+ (y − y0)

2
=

[

x2
0 − x2

1 − 2x(x0 − x1) + y20

−y21 − 2y(y0 − y1) + (φ0 − φ1)
2
]2

/
[

4(φ0 − φ1)
2
]

,(15)

a quadratic equation whose solutions are conic sections
in the boundary surface dividing neighboring smectic do-
mains. The dark lines in Fig. 4 show compatible bound-
aries in the smectic microstructure given by the ellipses
and hyperbolas of Eq. (15).
We conjecture that the compatibility condition for 3D

smectic domains will lead to boundaries, as described
by Friedel [7], which are portions of right circular cones
connecting one point of a conic to its confocal partner.
How have we altered the standard theory of marten-

sites? Firstly, our elastic free energy density is writ-
ten in terms of the gradients of N , and hence second

derivatives of the displacement field φ – a strain gra-
dient theory. Second, our domains are not described
by a uniform deformation, but rather by a deforma-
tion determined by the non-local constraints [25] imposed
by the constraint of one-dimensional singularies. Con-
versely, what further can we glean from the martensitic
analogy? The mathematical engineers use sophisticated
real analysis (minimizing sequences and Young measure
distributions) to describe the family of boundary condi-
tions that can be relaxed by an infinitely fine microstruc-
ture [9–11]. Apollonian microstructures formed by a hier-
archy of ellipses are known to mediate smectic tilt bound-
aries [6, 26, 27]. An infinitely fine laminate of alternat-
ing concentric spheres and Dupin domains, inspired by
the experimental ‘flower texture’, has been shown to re-
lax an arbitrary cylindrically symmetric boundary con-
dition [12]. But the general question remains a fascinat-
ing one: what is the class of smectic boundary conditions
that can be mediated by structures of equally spaced lay-
ers with only line singularities?
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